1. 背景介绍
1.1 强化学习的局限性
强化学习 (Reinforcement Learning, RL) 已在游戏、机器人控制等领域取得了显著的成功。然而,传统的 RL 方法通常需要大量的训练数据,并且在面对新的、未知的环境时泛化能力较差。这主要是因为传统的 RL 方法直接学习从状态到动作的映射,而忽略了任务本身的结构和目标。
1.2 元学习的引入
元学习 (Meta-Learning) 的目标是让机器学习如何学习。元学习算法旨在从多个任务中学习一种通用的学习策略,使其能够快速适应新的任务。元学习的核心思想是将学习过程抽象成一个优化问题,通过学习一个元学习器来优化模型的参数,使其能够快速适应新的任务。
1.3 元强化学习的诞生
元强化学习 (Meta-Reinforcement Learning, Meta-RL) 结合了 RL 和元学习的优势,旨在解决传统 RL 方法的局限性。Meta-RL 旨在学习一种通用的强化学习算法,使其能够在面对新的、未知的环境时快速学习并取得良好的性能。
2. 核心概念与联系
2.1 任务与元任务
在 Meta-RL 中,我们通常将学习过程划分为两个层次:
- 任务 (Task): 指代特定的强化学