大语言模型原理与工程实践:DQN 训练:完整算法

大语言模型原理与工程实践:DQN 训练:完整算法

作者:禅与计算机程序设计艺术

1. 背景介绍

1.1 深度强化学习概述

1.1.1 强化学习基本概念
1.1.2 深度强化学习的兴起
1.1.3 深度强化学习的优势与挑战

1.2 DQN 的诞生

1.2.1 DQN 的历史沿革
1.2.2 DQN 相对于传统 Q-learning 的改进
1.2.3 DQN 在 Atari 游戏中的突破性表现

1.3 DQN 的应用现状

1.3.1 DQN 在游戏领域的应用
1.3.2 DQN 在机器人控制领域的应用
1.3.3 DQN 在其他领域的拓展应用

2. 核心概念与联系

2.1 马尔可夫决策过程(MDP)

2.1.1 MDP 的定义与组成要素
2.1.2 MDP 的贝尔曼方程
2.1.3 MDP 与强化学习的关系

2.2 Q-learning

2.2.1 Q-learning 的核心思想
2.2.2 Q-learning 的更新公式
2.2.3 Q-learning 的收敛性证明

2.3 DQN 中的核心概念

2.3.1 经验回放(Experience Replay)
2.3.2 目标网络(Target Network)
2.3.3 ε-贪婪探索(ε-Greedy Exploration)

2.4 DQN 与 Q-learning 的联系与区别

2.4.1 相同点:均基于 Q-learning 框架
2.4.2 不同点:DQN 引入了深度神经网络逼近 Q 函数
2.4.3 不同点:DQN 引入了经验回放与目标网络稳定训练

3. 核心算法原理具体操作步骤

3.1 DQN 的整体架构

3.1.1 DQN 的网络结构设计
3.1.2 DQN 的前向传播过程
3.1.3 DQN 的训练流程概述

3.2 DQN 算法步骤详解

3.2.1 初始化经验回放缓存 D
3.2.2 随机初始化动作值函数 Q 的参数 θ
3.2.3 初始化状态 s
3.2.4 在每个时间步 t 执行以下操作:
3.2.4.1 ε-贪婪策略选择动作 a
3.2.4.2 执行动作 a,观察奖励 r 和下一状态 s'
3.2.4.3 将转移(s,a,r,s') 存储到 D 中
3.2.4.4 从 D 中随机采样一个小批量的转移
3.2.4.5 对于终止状态,令 y = r
3.2.4.6 对于非终止状态,令 y = r + γ max_{a'} Q(s', a'; θ^-)
3.2.4.7 通过梯度下降法更新参数 θ
3.2.4.8 每隔 C 个步骤将 θ 的值复制给 θ^-
3.2.5 重复 3.2.4 直至收敛

3.3 DQN 算法的伪代码

4. 数学模型和公式详细讲解举例说明

4.1 状态-动作值函数的定义

$Q(s,a) = \mathbb{E}[R_t|s_t=s, a_t=a, π]$

其中 $R_t$ 是从时刻 t 到 终止状态获得的累计奖励,$π$ 是当前的策略。

4.2 Q-learning 的策略迭代过程

Q-learning 使用如下公式迭代地更新状态-动作值函数: $$ Q(s_t,a_t) \leftarrow Q(s_t,a_t) + \alpha [r_{t+1} + \gamma \max_{a} Q(s_{t+1}, a) - Q(s_t,a_t)] $$ 其中 $\alpha$ 是学习率,$\gamma$ 是折扣因子。

4.3 DQN 的损失函数

DQN 网络的损失函数为均方误差损失: $$ L(\theta_i) = \mathbb{E}{(s,a,s',r) \sim D} [(r+ \gamma \max{a'} Q(s', a'; \theta_i^-) - Q(s,a;\theta_i))^2] $$ 其中 $\theta_i$ 是当前时刻 Q 网络的参数,$\theta_i^-$ 是目标网络的参数。

4.4 DQN 的经验回放过程

经验回放通过缓存转移(s,a,r,s')并从中随机抽样来训练网络,形式化表示为: $$ D \leftarrow D \cup {(s_t, a_t, r_t, s_{t+1})} $$ $$ {(s_i, a_i, r_i, s_{i+1})}_{i=1}^{batch_size} \sim U(D) $$

4.5 DQN 的目标网络更新

DQN 每隔 C 个步骤将当前 Q 网络的参数 $\theta$ 复制给目标网络的参数 $\theta^-$: $$ \theta^- \leftarrow \theta \quad \text{every C steps} $$

5. 项目实践:代码实例和详细解释说明

5.1 DQN 的 PyTorch 实现

5.1.1 导入依赖库
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import collections
5.1.2 定义 Q 网络
class DQN(nn.Module):
    def __init__(self, state_size, action_size):
        super(DQN, self).__init__()
        self.fc1 = nn.Linear(state_size, 64)
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(64, 64)
        self.fc3 = nn.Linear(64, action_size)

    def forward(self, x):
        x = self.fc1(x)
        x = self.relu(x)
        x = self.fc2(x)
        x = self.relu(x) 
        x = self.fc3(x)
        return x
5.1.3 定义经验回放缓存
Transition = collections.namedtuple('Transition', 
                                    ('state', 'action', 'reward', 'next_state'))

class ReplayBuffer:
    def __init__(self, capacity):
        self.buffer = collections.deque(maxlen=capacity)

    def push(self, *args):
        self.buffer.append(Transition(*args))

    def sample(self, batch_size):
        indices = np.random.choice(len(self.buffer), batch_size, replace=False)
        states, actions, rewards, next_states = zip(*[self.buffer[idx] for idx in indices])
        return np.array(states), np.array(actions), np.array(rewards), np.array(next_states)

    def __len__(self):
        return len(self.buffer)
5.1.4 定义 DQN Agent
class DQNAgent:
    def __init__(self, state_size, action_size):
        self.state_size = state_size
        self.action_size = action_size
        self.gamma = 0.95
        self.epsilon = 1.0
        self.epsilon_min = 0.01
        self.epsilon_decay = 0.995
        self.learning_rate = 0.001
        self.memory = ReplayBuffer(10000)
        self.batch_size = 64
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = DQN(state_size, action_size).to(self.device)
        self.target_model = DQN(state_size, action_size).to(self.device)
        self.optimizer = optim.Adam(self.model.parameters())
        self.update_target_model()

    def update_target_model(self):
        self.target_model.load_state_dict(self.model.state_dict())

    def select_action(self, state):
        if np.random.rand() <= self.epsilon:
            return np.random.choice(self.action_size)
        else:
            state = torch.FloatTensor(state).unsqueeze(0).to(self.device) 
            q_value = self.model(state)
            action = q_value.max(1)[1].item()
            return action

    def train_model(self):
        if len(self.memory) < self.batch_size:
            return
        states, actions, rewards, next_states = self.memory.sample(self.batch_size)
        states = torch.FloatTensor(states).to(self.device)
        actions = torch.LongTensor(actions).unsqueeze(1).to(self.device)
        rewards = torch.FloatTensor(rewards).unsqueeze(1).to(self.device)
        next_states = torch.FloatTensor(next_states).to(self.device)

        q_values = self.model(states).gather(1, actions)
        next_q_values = self.target_model(next_states).max(1)[0].unsqueeze(1)
        expected_q_values = rewards + self.gamma * next_q_values

        loss = nn.MSELoss()(q_values, expected_q_values)
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay
5.1.5 完整训练流程
def train_dqn(env, agent, num_episodes):
    for episode in range(num_episodes):
        state = env.reset()
        episode_reward = 0

        while True:
            action = agent.select_action(state)
            next_state, reward, done, _ = env.step(action)
            agent.memory.push(state, action, reward, next_state)
            episode_reward += reward

            if done:
                print("Episode: {}, Reward: {}".format(episode + 1, episode_reward))
                break

            agent.train_model()

            state = next_state

        if episode % 10 == 0:
            agent.update_target_model()

5.2 完整训练过程解释

  1. 初始化 DQN Agent,包括 Q 网络和目标网络,以及经验回放缓存。
  2. 对于每个 episode:
    • 重置环境,获得初始状态。
    • 使用 ε-贪婪策略选择动作,执行动作并观察奖励和下一状态。
    • 将(state, action, reward, next_state)存储到经验回放缓存中。
    • 从经验回放缓存中随机采样一个批量的转移数据。
    • 通过 Q 网络和目标网络计算 TD 误差,并最小化均方误差损失来更新 Q 网络的参数。
    • 每隔一定的 episode 数量更新目标网络的参数。
  3. 重复步骤 2,直至训练完所有的 episode。

6. 实际应用场景

6.1 智能游戏 AI

6.1.1 Atari 游戏中的应用
6.1.2 星际争霸等策略游戏中的应用
6.1.3 围棋、国际象棋等棋类游戏中的应用

6.2 自动驾驶

6.2.1 端到端的驾驶策略学习
6.2.2 交通信号灯控制优化
6.2.3 自适应巡航控制

6.3 推荐系统

6.3.1 点击率预估
6.3.2 在线广告投放
6.3.3 个性化推荐

6.4 智能电网

6.4.1 需求响应优化
6.4.2 微电网能量管理
6.4.3 电力市场交易策略

7. 工具和资源推荐

7.1 深度强化学习框架

7.1.1 OpenAI Gym
7.1.2 DeepMind Lab
7.1.3 Unity ML-Agents

7.2 深度学习库

7.2.1 TensorFlow
7.2.2 PyTorch
7.2.3 Keras

7.3 开源项目和教程

7.3.1 Dopamine(Google 的强化学习框架)
7.3.2 Keras-rl
7.3.3 PyTorch 官方强化学习教程

7.4 学习资源

7.4.1 《深度强化学习》by Richard S. Sutton
7.4.2 《Reinforcement Learning: An Introduction》课程by David Silver
7.4.3 CS234: Reinforcement Learning 课程(Stanford)

8. 总结:未来发展趋势与挑战

8.1 DQN 的局限性

8.1.1 难以处理连续动作空间
8.1.2 样本利用率低
8.1.3 难以应对非平稳环境

8.2 DQN 的改进与变种

8.2.1 Double DQN

####

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值