Stochastic Gradient Descent (SGD) 原理与代码实战案例讲解

Stochastic Gradient Descent (SGD) 原理与代码实战案例讲解

关键词:

  • SGD(随机梯度下降)
  • 最小化损失
  • 迭代优化
  • 机器学习
  • 深度学习

1. 背景介绍

1.1 问题的由来

在机器学习和深度学习领域,优化算法用于最小化模型预测与实际结果之间的误差,也就是损失函数。最小化损失是许多算法的核心目标,而梯度则是指引我们向损失最小化方向前进的方向标。

1.2 研究现状

梯度下降法是最基本的优化方法之一,其目的是找到损失函数的局部最小值。批量梯度下降(BGD)在每次迭代时使用整个数据集来计算梯度,平均梯度给出全局视图,但在大数据集上计算成本高。随机梯度下降(SGD)则选择数据集中的单

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值