柳暗花明又一村:Seq2Seq编码器-解码器架构
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词:Seq2Seq, 序列到序列学习, 自回归模型, Transformer架构
1. 背景介绍
1.1 问题的由来
在自然语言处理(NLP)领域,序列到序列(Seq2Seq)学习是处理序列数据的关键技术之一,尤其在机器翻译、文本摘要、对话系统等任务中大放异彩。传统的NLP任务往往集中在单向处理,比如文本分类或命名实体识别。然而,Seq2Seq架构引入了端到端的学习方式,能够直接从输入序列到输出序列进行映射,极大提升了处理复杂任务的能力。
1.2 研究现状
随着深度学习技术的发展,Seq2Seq模型得到了广泛应用和持续优化。早期的模型通常采用递归神经网络(RNN)或循环神经网络(LSTM)作为基础架构,但由于梯度消失/爆炸问题,这些模型在处理长序列时性能受限。近年来,Transformer架构的出现极大地改善了这一问题,通过注意力机制实现了更好的序列处理能力,使得Seq2Seq模型能够处理更复杂的任务。