一切皆是映射:强化学习与神经网络的结合

一切皆是映射:强化学习与神经网络的结合

关键词:

强化学习(Reinforcement Learning, RL)、神经网络(Neural Networks, NN)、映射、功能近似、策略优化、智能代理、深度学习、多智能体系统、自主学习

1. 背景介绍

1.1 问题的由来

在当今数字化和智能化的时代背景下,强化学习作为一种能够从与环境的互动中学习策略的方法,已经成为解决复杂决策问题的强大工具。然而,强化学习的局限性在于它对环境模型的依赖以及对探索与利用之间平衡的敏感性。随着对更高效、更灵活的学习方法的需求日益增加,强化学习与神经网络的结合成为了一个具有巨大潜力的研究方向。通过将神经网络引入强化学习框架,不仅可以提升策略的表示能力,还能实现更加泛化的决策制定,从而跨越不同的任务和环境。

1.2 研究现状

近年来,强化学习与神经网络的结合催生了一系列突破性的进展。从基于神经网络的策略梯度方法(如DQN、A3C、PPO等)到基于深度学习的值函数逼近方法(如Deep Q-Networks、Dueling DQN、Hindsight Experience Replay等),再到多智能体强化学习中的分布式策略

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值