1. 背景介绍
1.1 问题由来
旅游业,作为全球最大的服务行业之一,面临着剧烈的市场竞争和动态的消费者需求。个性化推荐系统,作为一种提升用户体验、增加业务收入的关键技术,在旅游行业中得到了广泛应用。传统的推荐系统依赖于用户的历史行为数据,往往难以捕捉用户的真实需求和潜在兴趣。而随着人工智能技术的飞速发展,基于深度学习的个性化推荐系统成为提升旅游服务质量、增强客户满意度的重要手段。
旅游个性化推荐系统通过分析用户的历史行为数据、地理位置、旅游偏好等信息,精准预测用户的出行需求,提供个性化推荐服务。例如,用户想要前往一个新的旅游目的地,系统可以根据其以往的旅行记录、搜索历史和兴趣偏好,推荐最适合的旅游路线、酒店、景点、餐饮等,从而显著提升用户的旅行体验。
1.2 问题核心关键点
- 数据收集与处理:如何高效、准确地收集和处理用户数据,提取有价值的信息。
- 模型选择与优化:选择合适的推荐算法,并进行模型优化,以适应旅游场景的特殊需求。
- 推荐系统部署与维护:将推荐模型部署到实际旅游场景中,并进行系统的迭代优化和维护。
- 用户隐私与安全:如何在推荐