未来GenAI 怎样逐步改变搜索?

     欢迎来到雲闪世界人工智能的进步正在将传统搜索引擎转变为应答机。这一转变是由网络搜索领域的新老参与者共同推动的,并正在影响世界各地人们获取信息的方式。

     谁是基于 GenAI 的搜索的主要参与者?他们如何提出解决方案?这对用户有何影响?公司如何确保其内容在这种新的搜索模式下仍然对用户可见?这对产品经理、数据科学家以及任何从事技术工作的人意味着什么?这就是我们将在这篇博文中介绍的内容!

玩家们

多年来,谷歌在搜索引擎市场的主导地位首次面临有力的竞争。一些新公司纷纷推出核心 GenAI 搜索产品,例如:

  • 困惑—— “知识开始的地方”:基于 GenAI 的搜索器,具有附加功能,例如来源链接、相关问题、图片显示和图像生成等。

Perplexity 的 UI 中带有“什么是搜索引擎”问题示例

  • You.com — “使用智能助手提问/搜索网页/帮助修改电子邮件... ”:基于 GenAI 的搜索器允许选择不同的 LLM。
  • 未来搜索——“不要向只能给你 0.10 美元答案的人工智能提出价值 10,000 美元的问题”:专注于深入研究与公司相关的问题,例如市场规模、预测或销售估计。

我们还看到传统搜索引擎或公司也在自己的产品上进行实验和迭代,以包含 GenAI 功能:

  • Bing(微软)——从充当聊天机器人的专用副驾驶,并添加了图像生成和网络搜索等多模式功能,到将 GenAI 响应集成到“传统”网络搜索结果旁边。最近,他们宣布了进一步的迭代,以创建动态部分和内容,将 LLM 文本响应扩展到其他格式。

微软的 Bing UI 以“什么是搜索引擎”问题为例

  • Google:通过 Gemini,人们可以访问其法学硕士 (LLM) 的知识,它还具有网络搜索功能,并且能够验证响应并向信息源添加归因链接。

上周,我们听说一个新玩家也加入了这个竞争激烈的基于 genAI 的搜索领域:OpenAI!他们将其宣布为“新 AI 搜索功能的临时原型,可为您提供快速及时的答案以及清晰相关的来源”,与微软的方法类似,它不仅限于文本响应,还扩展到根据问题生成动态格式、部分和显示。

对用户的影响

所有这些公司和产品都在重塑用户与搜索引擎互动以及查找和访问信息的方式。 搜索引擎传统上为用户提供特定关键字或查询的相关资源列表。这要求用户花一些时间浏览不同的链接并获得正确的答案或上下文。多年来,搜索引擎改进了其检索和排序逻辑,试图将用户正在寻找的内容放在第一个结果中(从而减少了用户滚动和检查资源所需的时间)。

人工智能驱动的搜索更进一步,旨在直接针对用户查询提供简洁、概括的响应。在这种情况下,用户不再需要滚动浏览无数结果并阅读冗长的页面来找到他们想要的内容。

很快,用户将需要体验并掌握这些解决方案。对于某些搜索,传统搜索可能效果最好,而对于其他搜索,对话式/ genAI 搜索可能更受青睐,因为它们速度更快、效率更高,或者在响应中增加了创造力、改写或个性化。

但是,这种新方法也存在风险。可能最重要的风险是 LLM 可能出现错误信息和“幻觉”特征。这个问题最近变得非常火爆,因为某个搜索引擎会告诉用户吃石头和其他不稳定的答案。为了帮助确保 AI 生成的响应的准确性和可靠性,许多解决方案正在探索 RAG(检索增强生成)和其他技术来降低幻觉风险,同时向用于生成答案的资源添加归因链接,以便用户可以仔细检查响应和来源的可信度。

获得直接的回答也可能让我们变得更懒惰,过于相信法学硕士生成的内容,并失去批判性思维。除此之外,还存在与人工智能模型的内在偏见和歧视特征相关的风险,这些风险可能会放大现有的社会偏见。

对行业的影响

随着基于 GenAI 的搜索引擎的使用范围不断扩大,公司和数字产品需要重新考虑优化内容可见性的策略。传统的 SEO 技术侧重于关键词优化,需要不断发展,以考虑整个问题、对话背景,并对 LLM 的行为进行逆向工程,以确保某些内容出现在 AI 生成的响应中。这是一个有前途的领域,从 SEO 优化开始,但继续朝着 LLM 优化和特定交易发展(要深入了解 AI 搜索优化,请查看Reforge 上次 Ref:AI活动中的精彩对话):

  • 继续优化传统 SEO:因为它仍然很有价值,因为 GenAI 搜索通常会调用传统搜索过程来获取几个相关文档并从那里生成响应。
  • LLM 优化:确保内容出现在可抓取的文档中,并且语言与潜在用户查询相符。在产品名称附近强调关键品质、优势和使用场景,以鼓励 LLM 在其回复中扩展这些方面(例如下面的网球运动鞋示例!)。

品牌知名度的示例,例如“我能买到的最好的网球鞋是什么?”

  • 具体协议,例如OpenAI 与 The Atlantic之间的协议,该协议将使The Atlantic的文章可通过 OpenAI 的产品被发现,并包含归因链接,以便轻松访问全文。这是将媒体内容与 AI 平台相结合以提高可发现性的日益增长的趋势的一个很好的例子。

对项目经理、数据总监和其他技术角色的影响

即使您不从事与搜索相关的产品,也很快就会出现一些有趣的举措,帮助您的公司在所有这些新搜索引擎的响应和全球信息用户访问的信息中占据良好的位置。这是一个新领域,可能需要对 LLM 的工作原理、评估优化的新指标的定义以及潜在的模拟和反复试验有很强的敏感性。需要提出“在提及产品 X 的这些文档中包含此类词语”的解决方案,例如:

  • 增加包含我们品牌的搜索答案的百分比,并尝试使用不同语言、不同用户的相同问题的变体……
  • 通过评估品牌在市场中的定位、积极性或批评程度,提高品牌在市场响应中的展示质量……

在这种情况下,数据科学家可以发挥他们在自然语言处理领域的专业知识、法学硕士和预测模型的敏感性以及指标定义和评估。机器学习工程师或后端开发人员等其他角色也可能参与这些计划,以扩展查询、收集数据和部署流程。

也可能存在应用基于人工智能的搜索的内部用例!对于在线市场或类似公司而言,与网络搜索类似,有机会探索从传统产品搜索转向基于人工智能的搜索意味着什么。也许用户看重搜索结果中显示的产品列表的摘要或结论,或者也许这些文本显示具有一定程度的个性化,可以使内容与用户更相关……随着大型企业开始在搜索中加入这些人工智能功能,更多公司也将看到这样做的价值和竞争优势。

总结

不可否认,搜索的未来与人工智能息息相关。大多数用户很快就会探索并适应这种查找和访问信息的新方式,而数据和技术素养将是降低错误信息、偏见、歧视和批判性思维能力下降风险的关键。

随着搜索引擎逐渐演变为应答机,公司将需要调整其策略以保持可见性和相关性。开发技术以确保其内容被正确索引、可检索和由人工智能驱动的搜索引擎生成的技术的需求将日益增长。对于提供搜索功能的公司来说,也有机会探索基于人工智能的搜索可以为用户带来哪些附加值。无论如何,数据科学家和其他技术角色将是开发这些解决方案的关键。

搜索和 GenAI 的结合令人着迷,对许多公司来说具有巨大的潜力,并且未来将出现很酷的数据科学计划。这仅仅是个开始!

感谢关注雲闪世界。(亚马逊aws谷歌GCP服务协助解决云计算及产业相关解决方案)

 订阅频道(https://t.me/awsgoogvps_Host)
 TG交流群(t.me/awsgoogvpsHost)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值