基于大模型技术客服场景应用实践

在金融领域的数字化转型过程中,智能客服等应用场景在实施中面临着一系列严峻的挑战。随着市场需求从头部扩展到长尾,多样化和个性化的需求成为新的趋势。这种需求变化不仅提升了系统开发的成本和技术难度,还对服务质量提出了更高的要求。特别是在涉及文本生成的场景中,小模型的局限性显而易见,难以满足用户的期望。

大模型凭借其庞大的参数规模和强大的语义理解能力,在自然语言处理和文本生成等方面展现出了卓越的性能。大模型能够深入理解语言中的复杂结构和语义关系,生成更加准确和自然的文本。将大型模型技术应用于智能客服、企业知识库等场景有着巨大潜力,可助力各业务场景快速实现数字化转型,完成智能升级。

典型的大模型技术架构方案****

典型的大模型技术架构可分为组件层、模型层和资源层三大部分。其中组件层包含数据处理组件、安全组件、检索组件、RPA以及CV、NLP、ASR等众多小模型算法能力,可以支持与大模型服务组合调用。模型层支持多种大模型的加载训练与推理、数据加载和预处理、模型训练与优化、推理加速等能力。资源层包含数据资源、计算资源与存储资源等。

图1 大模型技术架构

三种大模型应用范式****

大模型技术以其强大的计算能力和灵活性,正在成为各行业智能化发展的核心引擎。然而,如何高效地应用大模型,并充分挖掘其潜力是业界迫切要解决的问题。目前行内主要有三种大模型应用范式,分别是:调用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值