前言
DeepSeek R1/R1-Zero让RL大火,SFT就无用了吗?滑铁卢与卡内基梅隆大学带来一种全新范式批判微调(CFT:Critique Fine-Tuning,已开源),即让模型学习对有噪声的回答进行批判,而不是简单地模仿正确的回答。
在Qwen2.5、Qwen2.5-Math和DeepSeek-Math等不同基础模型上,CFT在六个数学基准测试中相较于SFT平均提高了4-10%
CFT受到强调批判性思维的人类学习过程的启发,鼓励模型进行更深入的分析和细致的理解——这些特质通常被标准的SFT所忽视
数据集构建:从WebInstruct数据集中构建了一个包含50,000个样本的数据集,并使用GPT-4o作为“教师”模型来生成Critique,形式为([问题;有噪声的回答],批评)。
模型训练:CFT的目标是训练模型对给定的查询-回答对进行批判,最大化生成批判的概率 P(c∣[x;y]),其中 c 是查询-回答对 [x;y] 的标注批判。
CFT与SFT的对比
为了评估CFT的有效性,在三个7B参数规模的基础模型上,使用数学推理基准测试将其与各种SFT方法进行比较。所有实验均使用WebInstruct子集进行训练,CFT在六个数学基准测试中相较于SFT平均提高了4-10%
在WebInstruct的50,000个样本上,CFT与SFT的比较。SFT-verified表示在经过GPT-4o验证的回答上进行的SFT训练,SFT-GPT4o表示在GPT-4o生成的回答上进行的SFT训练。CFT在GPT-4o提供的批评上进行训练。
Qwen2.5-Math-7B-CFT与其他竞争模型的对比
将7B参数规模的CFT模型与其他不同规模的竞争模型进行比较。扩展了评估基准,以涵盖更广泛的STEM主题。Qwen2.5-Math-CFT模型仅需在8块H100 GPU上训练1小时,即可在大多数基准测试中与使用超过200万样本训练的强大竞争对手Qwen2.5-Math-Instruct相媲美,甚至超越它们
与基于强化学习(RL)的方法的对比
比较了不同基于强化学习的方法在数学推理中的效率和性能:
-
CFT在计算成本上减少了144倍,还能与SimpleRL相匹配,SimpleRL是基于DeepSeek-r1复制的模型;
-
在Minerva-Math和AMC23等严格的数学测试中表现出色。
案例研究1:连续分数运算
-
CFT模型保持精确的逐步计算,显示每个中间分数。
-
原始模型采用正确的方法,但在最后几步中出现计算错误。
-
CFT在追踪和计算连续分数乘法方面表现出更强的能力。
案例研究2:几何面积问题
-
尽管两种模型都正确地应用了勾股定理,但它们在组合面积的方法上存在显著差异。
-
CFT模型正确识别出五边形是正方形和三角形面积的总和。
-
SFT模型在概念上犯了一个关键错误,错误地减去而不是加上面积。
案例研究3:工人效率问题
-
CFT模型始终保持对问题核心概念(工作效率和时间)的清晰关注。
-
SFT模型在问题解读和解决方案方法上表现出显著的混乱。
-
CFT在处理涉及不同类型工人的多步率问题方面表现出更强的能力。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
