AI大模型应用入门实战与进阶:构建你的第一个大模型:实战指南

1.背景介绍

AI大模型应用入门实战与进阶:构建你的第一个大模型:实战指南

作者:禅与计算机程序设计艺术

背景介绍

人工智能的演变

自20世纪50年代人工智能(Artificial Intelligence, AI)诞生以来,它一直处于科研界的关注之列。然而,直到近年来,特别是2010年代,随着硬件性能的提高、数据的爆炸式增长和算法的突破,AI技术才得到了实际应用的飞速发展。

大模型技术的兴起

在AI技术的演变过程中,大模型技术(Large Model)是一个重要的方向,其核心思想是利用大规模的训练数据和计算资源,训练出一个能够对复杂输入做出合适反应的模型。相比传统的机器学习算法,大模型具有更好的泛化能力和更强大的表达能力,越来越多的应用场景中被证明是首选的解决方案。

核心概念与联系

什么是大模型?

大模型通常指的是需要大量计算资源和训练数据才能训练出来的模型。这类模型通常拥有数百万至数十亿的参数,比传统的机器学习模型要更大得多。

深度学习与大模型

深度学习(Deep Learning)是构成大模型的基础,它通过层次化的神经网络结构,将输入映射到输出。深度学习算法可以从输入中学习到复杂的特征,并且能够处理大规模数据集。

预训练与finetuning

大模型的训练通常采用预训练(Pretraining)和finetuning两个步骤。在预训练阶段,模型通过非监督学习的方式训练,使其能够学习到通用的特征表示;在finetuning阶段,通过对任务数据进行微调,使模型能够适应具体的应用场景。

核心算法原理和具体操作步骤以及数学模型公式详细讲解

Transformer架构

Transformer是目前训练大模型的主流架构,它由编码器(Encoder)和解码器(Decoder)两部分组成,并采用注意力机制(Attention)来捕捉输入序列中不同位置的依赖关系。

编码器(Encoder)

编码器包括多个相同的子层,每个子层包括两个基本单元:多头注意力机制(Multi-head Attention)和前馈神经网络(Feed Forward Networks)。

解码器(Decoder)

解码器也包括多个相同的子层,每个子层包括三个基本单元:多头注意力机制、编码器-解码器注意力机制(Encoder-Decoder Attention)和前馈神经网络。

注意力机制

注意力机制是Transformer模型中的核心技术,它可以帮助模型捕捉输入序列中不同位置的依赖关系。

单头注意力机制

单头注意力机制通过计算Q、K、V三个向量,计算出输入序列中不同位置之间的注意力权重,从而实现序列的编码或解码。

多头注意力机制

多头注意力机制将单头注意力机制的输入分割成多个子空间,并在每个子空间中独立地计算注意力权重。这样可以帮助模型捕捉到更丰富的信息。

预训练与finetuning

大模型的训练通常采用预训练和finetuning两个步骤。在预训练阶段,模型通过非监督学习的方式训练,使其能够学习到通用的特征表示;在finetuning阶段,通过对任务数据进行微调,使模型能够适应具体的应用场景。

预训练

在预训练阶段,模型通常被训练在一个大规模的语言模型任务上,例如BERT模型被训练在Masked Language Model(MLM)和Next Sentence Prediction(NSP)任务上。

Finetuning

在finetuning阶段,模型会根据具体的应用场景进行微调。例如,在文本分类任务中,通常会在输入序列后添加一个Softmax层,以将输出映射到类别空间中。

具体最佳实践:代码实例和详细解释说明

准备环境

首先需要安装Python环境,并安装所需的库,例如Transformers、torch等。

python

复制代码!pip install torch transformers

加载预训练模型

接着,我们需要加载一个预训练好的Transformer模型,例如BERT模型。

python复制代码from transformers import BertForSequenceClassification, BertTokenizer

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

数据处理

在数据处理部分,我们需要对输入序列进行 tokenization、padding 和分 batch。

python复制代码import torch

def preprocess_function(examples):
   return tokenizer(examples['text'], truncation=True, padding='max_length')

train_dataset = load_dataset('my_dataset', split='train')
train_dataset = train_dataset.map(preprocess_function, batched=True)
train_dataset = train_dataset.shuffle(buffer_size=10000).batch(32).prefetch(tf.data.AUTOTUNE)

模型训练

在模型训练部分,我们需要定义优化器和损失函数,并在训练循环中计算梯度和更新参数。

python复制代码optimizer = AdamW(model.parameters(), lr=1e-5)
loss_fn = CrossEntropyLoss()

for epoch in range(epochs):
   for batch in train_dataset:
       input_ids = batch['input_ids'].squeeze()
       attention_mask = batch['attention_mask'].squeeze()
       labels = batch['label']
       
       optimizer.zero_grad()
       outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
       loss = outputs[0]
       loss.backward()
       optimizer.step()
       
   print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))

模型评估

在模型评估部分,我们需要计算模型在测试集上的性能指标,例如准确率、召回率和 F1 分数。

python复制代码test_dataset = load_dataset('my_dataset', split='test')
test_dataset = test_dataset.map(preprocess_function, batched=True)

model.eval()
total_correct = 0
total_num = 0
for batch in test_dataset:
   input_ids = batch['input_ids'].squeeze()
   attention_mask = batch['attention_mask'].squeeze()
   labels = batch['label']
   
   with torch.no_grad():
       outputs = model(input_ids, attention_mask=attention_mask)
       
   logits = outputs[0]
   pred = torch.argmax(logits, dim=-1)
   total_correct += (pred == labels).sum().item()
   total_num += len(labels)
   
print('Accuracy: {:.4f}'.format(total_correct/total_num))

实际应用场景

自然语言理解

大模型在自然语言理解领域有着广泛的应用,例如情感分析、文本 summarization 和问答系统等。

计算机视觉

在计算机视觉领域,大模型也被广泛应用,例如图像分类、目标检测和语义分割等。

工具和资源推荐

Transformers

Transformers 是 Hugging Face 开发的一个深度学习框架,提供了大量的预训练模型,包括 BERT、RoBERTa、XLNet 和 ViT 等。

TensorFlow

TensorFlow 是 Google 开发的一种流行的深度学习框架,支持多种硬件平台,包括 CPU、GPU 和 TPU。

PyTorch

PyTorch 是 Facebook 开发的一种流行的深度学习框架,拥有简单易用的 API,并且支持动态计算图。

总结:未来发展趋势与挑战

随着硬件性能的不断提高,大模型技术将会更加普及,并在更多的应用场景中得到应用。同时,大模型的训练成本也会降低,使更多的组织和个人可以参与到大模型的研究和应用中来。

然而,大模型技术也面临着许多挑战,例如数据质量、模型 interpretability 和负样本生成等。这些问题需要我们继续关注和研究,以提高大模型的可靠性和可解释性。

附录:常见问题与解答

Q: 为什么需要预训练和finetuning?

A: 通过预训练和finetuning,大模型可以学习到通用的特征表示,并能够适应具体的应用场景。这种方法可以帮助模型获得更好的泛化能力,并且节省训练时间。

Q: 如何选择合适的预训练模型?

A: 选择合适的预训练模型取决于具体的应用场景。例如,对于自然语言处理任务,可以选择 BERT 或 RoBERTa;对于计算机视觉任务,可以选择 ViT 或 ResNet。此外,还需要考虑预训练模型的输入和输出格式,以确保它们符合任务的要求。

Q: 大模型的训练成本很高,如何降低成本?

A: 可以通过以下几种方法降低大模型的训练成本:

  • 采用分布式训练,将训练过程分布在多台机器上;
  • 使用半精度浮点数(FP16)进行训练,可以减少内存占用和带宽消耗;
  • 利用公共云服务商(AWS、Azure 等)的托管训练服务,可以减少训练基础设施的维护成本。

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型实际应用案例分享

①智能客服:某科技公司员工在学习了大模型课程后,成功开发了一套基于自然语言处理的大模型智能客服系统。该系统不仅提高了客户服务效率,还显著降低了人工成本。
②医疗影像分析:一位医学研究人员通过学习大模型课程,掌握了深度学习技术在医疗影像分析中的应用。他开发的算法能够准确识别肿瘤等病变,为医生提供了有力的诊断辅助。
③金融风险管理:一位金融分析师利用大模型课程中学到的知识,开发了一套信用评分模型。该模型帮助银行更准确地评估贷款申请者的信用风险,降低了不良贷款率。
④智能推荐系统:一位电商平台的工程师在学习大模型课程后,优化了平台的商品推荐算法。新算法提高了用户满意度和购买转化率,为公司带来了显著的增长。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

  • 24
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值