API调用大模型如此方便,为何企业还要私有化部署大模型?

直接通过网页API调用大模型确实方便快捷,尤其对于那些追求效率、希望快速集成AI功能的项目来说,云端服务是个不错的选择。但为啥有些企业和个人还琢磨着要把这些大模型搬到自家服务器上,搞个本地部署呢?

隐私保护

想象一下,如果你的公司处理的是客户敏感信息或者商业机密,直接把数据上传到云端处理,总有点担心信息外泄吧。本地部署就能让数据在内部流转,相当于给敏感信息加了个保险箱。

从国家层面来说,为什么国外ChatGPT这么厉害了,国家还要花大力气搞国产大模型?

因为大模型技术的飞速发展,会让其成为了重要敏感数据的诱捕器,ChatGPT将用户输入纳入训练数据库,用于改善ChatGPT,就能够利用大模型获得公开渠道覆盖不到的中文语料,掌握我们自己都可能不掌握的“中国知识”。所以必须搞国产大模型,不能通过API调用。

从行业层面说,比如用电行业,你想通过大模型生成一个用电分析报告,直接将生产数据通过API调用的方式访问大模型,一旦中间某个环节被监听或者泄露,那就是非常大的事故。

定制化和控制权

每个企业都有自己的一套流程和偏好,云端模型虽然通用,但可能不够贴身。本地部署就灵活多了,你可以按照自家的需求调整模型,训练它更好地理解行业术语,甚至优化算法来提升特定任务的效率,这样一来,模型就像是为你量身定做的。此外,再结合上一些前端和后端权限控制功能,就像自己做了一套完整的大模型应用。

这一点在toB场景非常常见。一般国企或者政府单位基于大模型做应用,一定是本地私有化部署的,原因有很多,咱就不细说了。

稳定性与响应速度

网络延迟、服务提供商的稳定性都是云端服务绕不开的问题。特别是一遇到高峰期,排队等待响应那就G了。本地部署就能确保服务的稳定性和低延迟,这对于要求即时反馈的场景非常重要。比如智能客服场景,你的QPS上去了,仍采用远程API调用,那服务会不会挂心里一点底都没有。比如你所在的环境可能网络不稳定或者压根儿没网,那也必须要本地部署。

ollama使用

现在本地部署大模型也不是难事。推荐使用开源工具ollama

像启动镜像一样本地下载运行大型语言模型

下载模型

Ollama 支持的模型列表见:https://ollama.com/library

ollama pull llama3

启动服务

如果你装好了ollama,启动模型服务只需执行如下命令:

ModelParametersSizeDownload
Llama 38B4.7GBollama run llama3
Llama 370B40GBollama run llama3:70b
Phi-33.8B2.3GBollama run phi3
Mistral7B4.1GBollama run mistral
Neural Chat7B4.1GBollama run neural-chat
Starling7B4.1GBollama run starling-lm
Code Llama7B3.8GBollama run codellama
Llama 2 Uncensored7B3.8GBollama run llama2-uncensored
LLaVA7B4.5GBollama run llava
Gemma2B1.4GBollama run gemma:2b
Gemma7B4.8GBollama run gemma:7b
Solar10.7B6.1GBollama run solar

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

### 混元大模型私有化部署方法 对于希望在本地环境中运行并利用混元大语言模型企业或开发者而言,私有化部署提供了一种安全可控的方式。腾讯混元不仅提供了开源的大规模预训练模型,还通过PaaS平台支持多种API服务调用[^1]。 #### 准备工作 为了实现混元大模型私有化部署,需先完成如下准备工作: - **环境配置**:确保服务器具备足够的计算资源(CPU/GPU)、内存空间以及网络带宽;安装必要的依赖库如Python、CUDA等; - **获取授权许可**:联系官方渠道获得合法使用权及相关技术支持文档; - **下载源码包**:从指定仓库克隆项目代码至目标机器上。 ```bash git clone https://github.com/Tencent/HunYuan.git cd HunYuan/ ``` #### 部署流程 ##### 安装依赖项 按照README文件中的指导说明来设置虚拟环境,并执行pip install命令以加载所需的第三方模块。 ```bash conda create -n hy python=3.8 source activate hy pip install -r requirements.txt ``` ##### 数据准备 如果计划微调现有模型,则需要准备好相应的数据集,并将其转换成适合输入格式。这部分操作通常涉及到编写自定义脚本来处理原始文本或其他形式的数据。 ##### 启动服务端口 启动HTTP RESTful API接口监听特定IP地址与端口号的服务进程,以便后续能够远程访问该实例所提供的功能特性。 ```python from flask import Flask, request, jsonify import torch from transformers import AutoModelForCausalLM, AutoTokenizer app = Flask(__name__) device = "cuda" if torch.cuda.is_available() else "cpu" model_name_or_path = "./path_to_model/" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path).to(device) @app.route('/predict', methods=['POST']) def predict(): input_text = request.json.get('text') inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return jsonify({"response":result}) if __name__ == '__main__': app.run(host='0.0.0.0', port=5000) ``` 以上代码片段展示了一个简单的Flask应用程序框架,用于接收来自客户端发送过来的消息请求,并返回由混元大模型生成的回答内容作为响应结果。 请注意,在实际生产环境下还需要考虑更多因素,比如安全性加固措施、性能优化策略等方面的工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值