LoRA面经搜集总结。
大家的显卡都比较吃紧,LoRA家族越来越壮大,基于LoRA出现了各种各样的改进,最近比较火的一个改进版是dora,听大家反馈口碑也不错。
基于PEFT的话用4090 24G显存也可以进行大模型的微调,所以LoRA家族这块还是很有研究和实际落地的潜力。
LoRA整个系列分为两个部分:
1、LoRA总述
2、LoRA家族演进
本篇开始介绍第一部分:LoRA总述,尽量以面经问题的形式提出并解答,下面是一个快捷目录。
一、概念
1. 简单介绍一下LoRA
2. LoRA的思路
3. LoRA的特点
4. LoRA的优点
5. LoRA的缺点
二、训练理论
1. LoRA权重是否可以合入原模型?
2. ChatGLM-6B LoRA后的权重多大?
3. LoRA微调方法为啥能加速训练?
4. 如何在已有LoRA模型上继续训练?
5. LoRA这种微调方法和全参数比起来有什么劣势吗?
6. LORA应该作用于Transformer的哪个参数矩阵?
7. LoRA 微调参数量怎么确定?
8. Rank 如何选取?
9. alpha参数 如何选取?
10. LoRA 高效微调如何避免过拟合?
11. 哪些因素会影响内存使用?
12. LoRA权重是否可以合并?
13. 是否可以逐层调整LoRA的最优rank?
14. Lora的矩阵怎么初始化?为什么要初始化为全0?
一、概念
1. 简单介绍一下LoRA
通过低秩分解来模拟参数的改变量,从而以极小的参数量来实现大模型的间接训练。实现思想很简单,就是冻结一个预训练模型的矩阵参数,并选择用A和B矩阵来替代,在下游任务时只更新A和B。
2. LoRA的思路
主要思想:在原模型旁边增加一个旁路,通过低秩分解(先降维再升维)来模拟参数的更新量。
-
训练:原模型固定,只训练降维矩阵A和升维矩阵B。
-
推理:可将BA加到原参数上,不引入额外的推理延迟。
-
初始化:A采用高斯分布初始化,B初始化为全0,保证训练开始时旁路为0矩阵。
-
可插拔式的切换任务:当前任务W0+B1A1,将lora部分减掉,换成B2A2,即可实现任务切换。
3. LoRA的特点
-
将BA加到W上可以消除推理延迟;
-
可以通过可插拔的形式切换到不同的任务;
-
设计的比较简单且效果好。
4. LoRA的优点
1)一个中心模型服务多个下游任务,节省参数存储量
2)推理阶段不引入额外计算量
3)与其它参数高效微调方法正交,可有效组合
4)训练任务比较稳定,效果比较好
5)LoRA 几乎不添加任何推理延迟,因为适配器权重可以与基本模型合并
5. LoRA的缺点
LoRA参与训练的模型参数量不多,也就百万到千万级别的参数量,所以效果比全量微调差很多。(数据以及算力满足的情况下,还是微调的参数越多越好)
二、训练理论
1. LoRA权重是否可以合入原模型?
可以,将训练好的低秩矩阵(B*A)+原模型权重合并(相加),计算出新的权重。
2. ChatGLM-6B LoRA后的权重多大?
rank 8 target_module query_key_value条件下,大约15M。
3. LoRA微调方法为啥能加速训练?
1)只更新了部分参数:比如LoRA原论文就选择只更新Self Attention的参数,实际使用时我们还可以选择只更新部分层的参数;
2)减少了通信时间:由于更新的参数量变少了,所以(尤其是多卡训练时)要传输的数据量也变少了,从而减少了传输时间;
3)采用了各种低精度加速技术,如FP16、FP8或者INT8量化等。
这三部分原因确实能加快训练速度,然而它们并不是LoRA所独有的,事实上几乎都有参数高效方法都具有这些特点。LoRA的优点是它的低秩分解很直观,在不少场景下跟全量微调的效果一致,以及在预测阶段不增加推理成本。
4. 如何在已有LoRA模型上继续训练?
理解此问题的情形是:已有的lora模型只训练了一部分数据,要训练另一部分数据的话,是在这个lora上继续训练呢,还是跟base 模型合并后再套一层lora,或者从头开始训练一个lora?
把之前的LoRA跟base model 合并后,继续训练就可以,为了保留之前的知识和能力,训练新的LoRA时,加入一些之前的训练数据是需要的。每次都要重头训练的话成本比较高。
5. LoRA这种微调方法和全参数比起来有什么劣势吗?
如果有足够计算资源以及有10k以上数据,还是建议全参数微调,lora的一个初衷就是为了解决不够计算资源的情况下微调,只引入了少量参数,就可以在消费级gpu上训练,但lora的问题在于它不能节省训练时间,相比于全量微调,他要训练更久,同时因为可训练参数量很小,在同样大量数据训练下,比不过全量微调。
6. LORA应该作用于Transformer的哪个参数矩阵?
从上图我们可以看到:
1)将所有微调参数都放到attention的某一个参数矩阵的效果并不好,将可微调参数平均分配到 Wq 和 Wk 的效果最好;
2)即使是秩仅取4也能在 ∆W 中获得足够的信息。
因此在实际操作中,应当将可微调参数分配到多种类型权重矩阵中,而不应该用更大的秩单独微调某种类型的权重矩阵。
7. LoRA 微调参数量怎么确定?
LoRA 模型中可训练参数的结果数量取决于低秩更新矩阵的大小,其主要由秩 r 和原始权重矩阵的形状确定。实际使用过程中,通过选择不同的 lora_target 决定训练的参数量。
以 LLama 为例:
–lora_target q_proj,k_proj,v_proj,o_proj,gate_proj,up_proj,down_proj
8. Rank 如何选取?
Rank的取值比较常见的是8,理论上说Rank在4-8之间效果最好,再高并没有效果提升。不过论文的实验是面向下游单一监督任务的,因此在指令微调上根据指令分布的广度,Rank选择还是需要在8以上的取值进行测试。
9. alpha参数 如何选取?
alpha其实是个缩放参数,本质和learning rate相同,所以为了简化可以默认让alpha=rank,只调整lr,这样可以简化超参。
10. LoRA 高效微调如何避免过拟合?
过拟合还是比较容易出现的。减小r或增加数据集大小可以帮助减少过拟合,还可以尝试增加优化器的权重衰减率或LoRA层的dropout值。
11. 哪些因素会影响内存使用?
内存使用受到模型大小、批量大小、LoRA参数数量以及数据集特性的影响。例如,使用较短的训练序列可以节省内存。
12. LoRA权重是否可以合并?
可以将多套LoRA权重合并。训练中保持LoRA权重独立,并在前向传播时添加,训练后可以合并权重以简化操作。
13. 是否可以逐层调整LoRA的最优rank?
理论上,可以为不同层选择不同的LoRA rank,类似于为不同层设定不同学习率,但由于增加了调优复杂性,实际中很少执行。
14. Lora的矩阵怎么初始化?为什么要初始化为全0?
矩阵B被初始化为0,而矩阵A正常高斯初始化。
如果B,A全都初始化为0,那么缺点与深度网络全0初始化一样,很容易导致梯度消失(因为此时初始所有神经元的功能都是等价的)。
如果B,A全部高斯初始化,那么在网络训练刚开始就会有概率为得到一个过大的偏移值Δ W 从而引入太多噪声,导致难以收敛。
因此,一部分初始为0,一部分正常初始化是为了在训练开始时维持网络的原有输出(初始偏移为0),但同时也保证在真正开始学习后能够更好的收敛。
零基础如何学习大模型 AI
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
⑤AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。
⑥AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~