介绍 LoRA 与 QLoRA
1. LoRA (Low-Rank Adaptation)
LoRA 是一种用于大规模语言模型 (LLM) 的参数高效微调技术,旨在减少微调大模型所需的计算资源和存储空间。LoRA 的核心思想是将全量参数更新分解为低秩矩阵的形式,从而显著减少参数数量和计算开销。
核心思想:
低秩分解:将大模型的权重矩阵表示为两个低秩矩阵的乘积。这种分解方法不仅保留了原始模型的表示能力,还显著减少了微调过程中需要更新的参数数量。
参数高效:通过这种方式,只需微调少量参数(即低秩矩阵的参数),而非整个模型的参数,从而大大降低了存储和计算成本。
优点:
存储节省:减少了需要存储和更新的参数数量。
计算效率:降低了微调过程中所需的计算资源。
可扩展性:适用于各种大规模预训练模型,包括 NLP 和 CV 等领域。
应用场景:
自然语言处理 (NLP):如机器翻译、文本生成等任务。
计算机视觉 (CV):如图像分类、对象检测等任务。
import torch
import torch.nn as nn
class LoRALinear(nn.Module):
def __init__(self, in_features, out_features, rank=4):
super(LoRALinear, self).__init__()
self.rank = rank
self.weight_A = nn.Parameter(torch.randn(in_features, rank))
self.weight_B = nn.Parameter(torch.randn(rank, out_features))
self.bias = nn.Parameter(torch.zeros(out_features))
def forward(self, x):
return x @ self.weight_A @ self.weight_B + self.bias
# 示例用法
lora_layer = LoRALinear(512, 1024)
input_data = torch.randn(32, 512)
output_data = lora_layer(input_data)
2. QLoRA (Quantized Low-Rank Adaptation)
QLoRA (Quantized Low-Rank Adaptation) 是一种结合了模型量化和低秩适配的技术,旨在减少大规模预训练模型微调和部署的计算和存储成本。QLoRA 的主要思路是:
量化预训练模型参数:将已有的大规模预训练模型参数进行量化处理,以减少存储需求和计算负担。
低秩适配 (LoRA):在量化后的模型上应