大模型基础知识-LoRA与QLoRA

介绍 LoRA 与 QLoRA
1. LoRA (Low-Rank Adaptation)
LoRA 是一种用于大规模语言模型 (LLM) 的参数高效微调技术,旨在减少微调大模型所需的计算资源和存储空间。LoRA 的核心思想是将全量参数更新分解为低秩矩阵的形式,从而显著减少参数数量和计算开销。

核心思想:

低秩分解:将大模型的权重矩阵表示为两个低秩矩阵的乘积。这种分解方法不仅保留了原始模型的表示能力,还显著减少了微调过程中需要更新的参数数量。
参数高效:通过这种方式,只需微调少量参数(即低秩矩阵的参数),而非整个模型的参数,从而大大降低了存储和计算成本。
优点:

存储节省:减少了需要存储和更新的参数数量。
计算效率:降低了微调过程中所需的计算资源。
可扩展性:适用于各种大规模预训练模型,包括 NLP 和 CV 等领域。
应用场景:

自然语言处理 (NLP):如机器翻译、文本生成等任务。
计算机视觉 (CV):如图像分类、对象检测等任务。

import torch
import torch.nn as nn

class LoRALinear(nn.Module):
    def __init__(self, in_features, out_features, rank=4):
        super(LoRALinear, self).__init__()
        self.rank = rank
        self.weight_A = nn.Parameter(torch.randn(in_features, rank))
        self.weight_B = nn.Parameter(torch.randn(rank, out_features))
        self.bias = nn.Parameter(torch.zeros(out_features))

    def forward(self, x):
        return x @ self.weight_A @ self.weight_B + self.bias

# 示例用法
lora_layer = LoRALinear(512, 1024)
input_data = torch.randn(32, 512)
output_data = lora_layer(input_data)

2. QLoRA (Quantized Low-Rank Adaptation)

QLoRA (Quantized Low-Rank Adaptation) 是一种结合了模型量化和低秩适配的技术,旨在减少大规模预训练模型微调和部署的计算和存储成本。QLoRA 的主要思路是:

量化预训练模型参数:将已有的大规模预训练模型参数进行量化处理,以减少存储需求和计算负担。
低秩适配 (LoRA):在量化后的模型上应

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值