一文彻底搞懂大模型 - Fine-tuning三种微调方式

图片

在生成式AI和大语言大模型(如GPT、LLaMA)的广泛应用中,微调(Fine-tuning)作为模型适应特定任务的关键步骤,其重要性不言而喻。以下将详细介绍三种流行的微调方式:Prompt-tuning、Prefix-tuning和LoRA,深入理解每种方法的原理、特点及应用场景。

图片

方式一:Prompt-tuning

什么是Prompt-tuning?Prompt-tuning通过修改输入文本的提示(Prompt)来引导模型生成符合特定任务或情境的输出,而无需对模型的全量参数进行微调。

这种方法利用了预训练语言模型(PLM)在零样本或少样本学习中的强大能力,通过修改输入提示来激活模型内部的相关知识和能力。

图片

核心原理:PLM(预训练模型)不变,W(模型的权重)不变,X(模型输入)改变。

图片

如何进行Prompt-tuning?小模型适配下游任务

设计任务相关提示模板,并微调提示嵌入以引导预训练模型适应特定任务。仅需微调少量提示嵌入(Prompt Embeddings),而非整个模型参数。
图片

  1. 设计提示模板:

    • 模板中应包含任务描述、输入文本占位符、输出格式要求等元素。
  2. 准备数据集:

    • 数据集应包括输入文本、真实标签(对于监督学习任务)或预期输出格式(对于生成任务)。
  3. 微调提示嵌入:

    • 在预训练模型的输入层添加提示嵌入层,使用数据集对模型进行训练,特别是微调提示嵌入。

图片

方式二:Prefix-tuning

什么是Prefix-tuning?Prefix-tuning是Prompt-tuning的一种变体,它通过在输入文本前添加一段可学习的“前缀”来指导模型完成任务。

这个前缀与输入序列一起作为注意力机制的输入,从而影响模型对输入序列的理解和表示。由于前缀是可学习的,它可以在微调过程中根据特定任务进行调整,使得模型能够更好地适应新的领域或任务。
图片

Prefix-tuning

核心原理:PLM(预训练模型)不变,W(模型的权重)不变,X(模型输入)不变,增加W’(前缀嵌入的权重)。

图片

如何进行Prefix-tuning?在 Transformer 中适配下游任务

在Transformer模型的输入层或各层输入前添加可学习的前缀嵌入,并通过训练这些前缀嵌入来优化模型在特定任务上的表现。

  1. 初始化前缀嵌入

    • 在Transformer模型的输入层之前,初始化一个固定长度的前缀嵌入矩阵。
  2. 将前缀嵌入与输入序列拼接

    • 将初始化好的前缀嵌入与原始输入序列的词嵌入进行拼接,形成新的输入表示。这个新的输入表示将作为Transformer模型各层的输入。
  3. 训练模型

    • 在训练过程中,模型会根据输入序列(包括前缀嵌入)和标签数据进行学习。通过反向传播算法,模型会更新前缀嵌入的参数。

图片

方式三:LoRA

什么是LoRA?LoRA(Low-Rank Adaptation)通过分解预训练模型中的部分权重矩阵为低秩矩阵,并仅微调这些低秩矩阵的少量参数来适应新任务。
对于预训练权重矩阵W0∈Rd×d𝑊0∈𝑅𝑑×𝑑,LoRa限制了其更新方式,即将全参微调的增量参数矩阵ΔWΔ𝑊表示为两个参数量更小的矩阵A、B,即ΔW = AB。

其中,B∈Rd×r𝐵∈𝑅𝑑×𝑟和A∈Rr×d𝐴∈𝑅𝑟×𝑑为LoRA低秩适应的权重矩阵,秩r𝑟远小于d𝑑。

图片

LoRA

核心原理:W(模型的权重)不变,X(模型输入)不变,分解Δ\W(分解为两个低秩矩阵A、B)。

图片

LoRA

如何进行LoRA微调?在冻结预训练模型权重的基础上,通过优化算法训练低秩矩阵A和B以近似增量参数,最小化下游任务损失,从而实现高效的模型微调。

  1. 设置LoRA模块

    • 在预训练模型的基础上,添加LoRA模块。LoRA模块通常包含两个参数量较少的矩阵A和B,它们的乘积用于近似全参数微调中的增量参数。
    • 初始化矩阵A和B,通常使用高斯函数进行初始化,以确保训练开始时LoRA的旁路(即BA)为0,从而与全参数微调有相同的起始点。
  2. 训练LoRA模块

    • 在训练过程中,冻结预训练模型的权重,仅训练LoRA模块中的矩阵A和B。
    • 通过优化算法(如Adam)更新矩阵A和B的参数,以最小化下游任务的损失函数。

图片

LoRA

LLaMA-Factory通过集成LoRA微调方法,为大型语言模型提供高效、低成本的微调方案,支持多模型、多算法和实时监控,仅训练低秩矩阵实现快速适应新任务。
图片

LLaMA-Factory

LoRA参数主要包括秩(lora_rank,影响性能和训练时间)、缩放系数(lora_alpha,确保训练稳定)和Dropout系数(lora_dropout,防止过拟合),它们共同影响模型微调的效果和效率。

图片

1. 秩(Rank)
  • 参数名称:lora_rank
  • 描述:秩是LoRA中最重要的参数之一,它决定了低秩矩阵的维度。
  • 常用值:对于小型数据集或简单任务,秩可以设置为1或2;对于更复杂的任务,秩可能需要设置为4、8或更高。
2. 缩放系数(Alpha)
  • 参数名称:lora_alpha
  • 描述:缩放系数用于在训练开始时对低秩矩阵的更新进行缩放。
  • 常用值:缩放系数的具体值取决于秩的大小和任务的复杂度。
3. Dropout系数
  • 参数名称:lora_dropout
  • 描述:Dropout系数决定了在训练过程中随机丢弃低秩矩阵中元素的概率。
  • 常用值:Dropout系数的常用值范围在0到1之间。

图片

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。

AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。


这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

四、LLM面试题

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值