想成为大厂算法工程师,到底有具备什么样的条件?

对求职者来说,能成为一名大厂的算法工程师,无疑是职业生涯的巅峰。毕竟,互联网大不同厂工种薪资排序,大体是算法>工程>产品>运营>其他,同职级的员工,算法的薪水可能是运营人员的一倍,甚至还要高。

目前,主流互联网大厂的算法岗位一般有搜索、广告、推荐(统称搜广推)算法;NLP(自然语言处理)/CV(计算机视觉)多模态识别算法;大模型算法,包括大模型底座(对背景要求较高,一般都是之前做NLP、CV,多模态算法转岗的)和大模型应用算法(要求相对低一些,反正大家都是根据Meta的开源大模型LLM根据自己的数据和实际情况进行修改)。此外,还有深度学习、机器学习、智能决策等算法。当然,像营销、风控、无人驾驶、运筹调度等算法,也都是以上算法的变种和延伸。

薪水最高的职位,自然对求职者的要求也是最高的。那么,在这个互联网越来越卷的时代,想成为一名互联网大厂的算法工程师,需要满足哪些条件?

1、教育背景

好的教育背景是进互联网大厂的敲门砖,作为互联网大厂学历要求最高的工种,算法职位一般要求求职者是计算机、软件工程、电气工程、数学、统计学等相关专业,学历要求硕士或者以上,本科生已经基本没机会了。

此外,虽然明面上不说,但现在能进互联网大厂做算法的基本都是排名中上的985高校(农大、民族大学、西北农林这种比较难)和类似北邮、西电、北科大这类顶级的211高校硕士。对于那种普通211和双非,二本高校背景的求职者,想进互联网大厂做算法不能说完全没有可能,只能说希望渺茫。

专业这块,要求并没有那么高,非计算机类专业,如果有其他大厂算法背景或者有大厂实习背景,也还是有一定机会的。

2、公司、项目背景

社招时,互联网大厂对求职者的公司和项目背景要求比较高。比如,阿里妈妈的广告算法,一般要求求职者有两年以上广告、搜索、推荐算法背景,最好是字节、百度、快手等对标大厂的广告算法背景。比如小红书要招一个社区或者短视频推荐算法,那一般主要会看字节、快手、腾讯系短视频或者图文的推荐算法背景。如果你之前在百度做无人驾驶,现在想面试抖音或者快手的短视频推荐算法,那可能性基本为0。

在社招渠道上,当求职者选择了一个算法方向之后,工作两三年之后再想换方向,难度就比较大。如果你前几年自动驾驶火热时不幸上了“贼船”,现在再想转搜广推,成功概率非常低。除非你条件超出一般人的好,而且经验又不是很多,比如2年以内,能力还没完全定型,可能还有“悔过改正”的机会。

除此之外,由于中小型互联网公司对算法要求不高,而且数据样本太少,导致在面试大厂算法岗位时竞争力不够,很难通过。这对算法类的求职者来说,也是一个比较大的坑。

P.S.非常不建议校招生去中小厂做算法。当然,小红书、B站,得物这个级别的还是可以考虑的。

3、算法模型和代码水平

作为算法领域的求职者,对CF、MF、FM、word2vec、LR、GBDT、DNN、Wide&Deep等常用的算法模型大部分熟悉&少数了解是最基本的要求。对LLM,tensorFlow、PyTorch,Caffe等模型和算法架构,以及Python、C++,Java等计算机语言的熟练和了解,都是不可或缺的。

4、论文、比赛和开源项目

在大多数的算法职位招聘中,有国际顶会论文都会是一个大大的加分项,比如SIGIR、SIGKDD、ICML、NIPS、WSDM、WWW、AAAI、CIKM、ACL、RECSYS或者计算机类的核心期刊上发表过论文者,在面试时会有较大的优势。

除此之外,在ACM或数据挖掘&机器学习类竞赛(天池大奖赛、Kaggle竞赛)并取得好名次者更佳。比如,国内知名AI公司第四范式的创始人戴文渊,在上海交通大学就读期间,带领三人团队夺得了ACM世界冠军和三个亚洲冠军,并担任ACM竞赛教练指导学生多次获得亚洲冠军。

如果求职者是国内外知名开源项目的核心代码维护者,也会是一个加分项。

所以,求职者在学习和工作中,如果有能力、精力和时间,争取发表几篇论文或者参加ACM比赛拿到名次,对未来的求职是非常有帮助的。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

### 大厂 Java 开发岗常见面试题汇总 #### 基础知识部分 1. **Java内存模型** 面试官通常会考察候选人对JVM的理解程度,尤其是堆、栈、方法区等区域的作用及其生命周期。例如,“什么是垃圾回收机制?如何触发GC?”[^1] 2. **多线程与并发控制** 并发编程是Java开发中的重点之一。“谈谈volatile关键字的作用以及它与synchronized的区别。”[^2] 这类问题是评估开发者是否具备处理复杂场景的能力。 3. **集合框架** 掌握常用的数据结构实现原理至关重要。“ArrayList和LinkedList的主要区别是什么?HashMap内部是如何工作的?”[^3] 4. **异常处理机制** “请解释Checked Exception 和 Unchecked Exception 的不同之处,并举例说明各自的应用场合。”[^4] #### 中级技能部分 5. **设计模式应用** 设计模式能够体现候选人的架构思维水平。“单例模式有哪些变体形式?它们各自的优缺点是什么?” 6. **Spring生态体系** Spring作为主流框架,在企业级应用中占据重要地位。“IOC容器的工作流程是怎么样的?AOP又是基于什么原理来实现的?” 7. **数据库交互优化** 数据访问层性能调优也是常考方向。“MyBatis执行SQL语句的具体过程是什么样式的呢?怎样提升批量操作效率?” 8. **网络通信基础** HTTP协议细节不容忽视。“GET请求和POST请求有什么本质上的差异吗?为什么RESTful API越来越流行?” #### 高级挑战部分 9. **分布式系统理论** 对于资深工程师而言,了解CAP定理、一致性哈希算法等相关概念尤为重要。“如果要构建一个高可用的服务集群方案你会考虑哪些方面因素?”[^5] 10. **微服务治理策略** 微服务体系下的服务发现、负载均衡等问题同样值得关注。“Eureka对比Zookeeper做注册中心各有何特点优势劣势分析一下吧.” ```java // 示例代码:展示简单的多线程同步问题解决方案 public class Counter { private int count = 0; public synchronized void increment() { // 使用synchronized确保线程安全 this.count++; } public int getCount(){ return this.count; } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值