生成式AI技术有哪些应用场景

前言

生成式AI是简化创意人员、工程师、研究人员、科学家等工作流程的有力工具,其使用案例和可能性涵盖所有行业和个人。

生成式AI模型可以接收文本、图像、音频、视频和代码等输入,并将新内容生成成上述任何形式。例如,它将文本输入转换为图像,将图像转换为歌曲,或将视频转换为文本。

目前生成式AI流行的应用:

语言:文本是许多生成式AI模型的根基,被认为是最先进的领域。基于语言的最流行的生成模型之一被称为大型语言模型(LLM)。大型语言模型正在被广泛应用于各种任务,包括文章生成、代码开发、翻译,甚至理解基因序列。

音频:音乐、音频和语音也是生成式AI中新兴的领域。例如,模型能够根据文本输入开发歌曲和音频片段,识别视频中的物体并为不同的视频片段创建伴随噪音,甚至创建自定义音乐。

视觉:生成式AI最流行的应用之一是在图像领域。这包括创建3D图像、虚拟化身、视频、图表和其他插图。生成具有不同审美风格的图像具有灵活性,以及编辑和修改生成的可视化的技术。生成式AI模型可以创建图表,展示新的化学化合物和分子,以帮助药物发现,为虚拟或增强现实创建逼真的图像,为视频游戏制作3D模型,设计标识,增强或编辑现有图像等等。

合成数据:当数据不存在、受到限制,或者根本无法以最高精度解决边缘案例时,合成数据对于训练AI模型非常有用。通过生成模型开发合成数据可能是克服许多企业面临的数据挑战的最具影响力的解决方案之一。它涵盖所有模式和用例,并且可以通过称为标签高效学习的过程实现。生成式AI模型可以通过自动生成额外的增强训练数据或学习数据的内部表示来降低标记成本,从而方便使用较少的标记数据训练AI模型。

生成式模型的影响广泛,很多场景也利用生成式AI技术。

在汽车行业,生成式AI有望帮助创建用于模拟和汽车开发的3D世界和模型。合成数据也被用于训练自动驾驶汽车。能够在逼真的3D世界中测试自动驾驶汽车的能力,提高了安全性和效率,降低了风险和开销。

自然科学领域从生成式AI中获得了显著收益。在医疗行业,生成式模型能通过创新蛋白质序列来助力药物研发,为医学研究提供支持。专业人士还可以从诸如病历、医学编码、医学影像和基因组分析等任务的自动化中受惠。此外,在气象领域,生成式模型可用于模拟地球,从而更精确地预测天气和自然灾害。这些应用有助于为公众营造更安全的环境,使科学家能预测并更好地应对自然灾害。

在娱乐产业,从视频游戏到电影、动画、虚拟世界建设和虚拟现实等各个方面,都在利用生成式AI模型来助力内容创作流程。创作者将生成式模型视为工具,用以助力创新和发挥想象力。

最后的最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

生成式AI在多个领域都有广泛的应用,其主要应用场景包括但不限于以下几个方面: **图像生成** 生成式AI可以用于生成高质量的艺术作品、照片修复、风格迁移等任务。例如,GANs (Generative Adversarial Networks) 能够生成逼真的图像,这些图像可能看起来像是由人类艺术家创作的一样。 ```python # 使用TensorFlow实现简单的GANs模型 import tensorflow as tf def build_generator(): model = tf.keras.Sequential() # 添加网络层 return model def build_discriminator(): model = tf.keras.Sequential() # 添加网络层 return model generator = build_generator() discriminator = build_discriminator() # 训练过程 ``` **自然语言生成** 生成式AI能够自动生成文本,如文章、诗歌、对话等。例如,基于Transformer架构的语言模型可以生成连贯且语义丰富的句子。 ```python from transformers import pipeline nlp = pipeline("text-generation", model="distilgpt2") output = nlp("The future of AI is", max_length=50, num_return_sequences=2) print(output) ``` **音乐生成** 生成式AI还可以用来作曲,生成各种类型的音乐片段。这不仅限于流行音乐,还包括古典乐、电子音乐等多种风格。 ```python # 使用Magenta库生成音乐 from magenta.models.music_vae import configs from magenta.models.music_vae.trained_model import TrainedModel config = configs.CONFIG_MAP['cat-mel_2bar_big'] model = TrainedModel(config, batch_size=4, checkpoint_dir_or_path='path/to/checkpoint') generated_samples = model.sample(n=2, length=32) ``` **三维模型生成** 生成式AI可用于设计复杂的三维物体,比如家具、建筑结构等。这种方法可以帮助设计师快速迭代设计方案,并探索更多可能性。 ```python # 示例代码暂缺,因为三维建模通常涉及特定软件API调用 ``` **跨领域生成** 除了单一领域的应用外,生成式AI还能跨越不同领域,创造出融合多种元素的作品。例如,结合视觉艺术与音乐,生成同步的视听体验。 **安全性与伦理考量** 随着技术的发展,生成式AI带来的潜在风险也日益受到重视。因此,在部署任何生成式AI系统之前,都需要仔细评估其可能产生的负面影响,并采取相应措施加以防范。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值