大模型应用开发,必看的高级 RAG 技术

最近一直在探索RAG相关的技术,并且分析了langchain和llamaindex相关技术实现,现在总结和分享一些自己的经验。

RAG前沿进展

我们借助下面论文中的截图,来说明目前RAG技术的进展。

Retrieval-Augmented Generation for Large Language Models: A Survey

除了在用户的输入query上做文章外,还有更多的操作是进行后处理,比如多路召回和重排序。而且最新的技术也增加了很多新模块,比如 self-RAG 这篇文章就引入了自我性,通过训练一个新的LLM去自适应地按需检索段落,并生成和反映检索到的段落和它自己的生成结果。但这个方法的流程太长,是否适合线上的实际环境,需要真实场景的验证。

从langchain以及llama的实现,以及论文中提及到内容,这次分享RAG的高阶技术分为了三个大模块,

一个是Query Transformation,也就是针对用户query的相关操作,

第二个是Agent技术,本质上利用大模型的能力去调用函数来实现更复杂的功能,

第三个是Post-process 也就是后处理,在我们检索到上下文之后,可以使用一些后处理的方法去对数据进行处理,以便得到更优质的上下文信息。

像重排序、多路召回技术这些都比较常见了,就不再做过多的阐述。

Query Transformation

query transformation 主要就是利用各种技巧和大模型的能力,去对用户的query进行改写,转换等操作,丰富query的语义信息。

Query Rewrite

因为对于 LLM 而言,原始查询不可能总是最佳检索,尤其是在现实世界中,我们首先提示 LLM 重写查询,然后进行检索增强阅读。这个技术可以参考下面langchain中的示例,本质还是使用了提示词工程,去编写改写的提示词,这部分提示词也是可以优化的地方。

template = """Provide a better search query for \
web search engine to answer the given question, end \
the queries with ’**’. Question: \
{x} Answer:"""
rewrite_prompt = ChatPromptTemplate.from_template(template)
 
 
def _parse(text):
    return text.strip("**")
 
 
distracted_query = "man that sam bankman fried trial was crazy! what is langchain?"
 
 
rewriter = rewrite_prompt | ChatOpenAI(temperature=0) | StrOutputParser() | _parse
 
 
rewriter.invoke({"x": distracted_query})

MultiQuery

本质上是query rewrite的改进版,可以同时生成n个和用户query相似的query,然后同时进行检索,这样能确保召回的内容尽可能的符合原始query。具体可以参考下面的代码,需要 langchian 的最新版本。

from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain_openai import ChatOpenAI

question = "What are the approaches to Task Decomposition?"
llm = ChatOpenAI(temperature=0)
retriever_from_llm = MultiQueryRetriever.from_llm(
    retriever=vectordb.as_retriever(), llm=llm
)

Hyde

Hyde全称是Hypothetical Document Embeddings,通过LLM对用户的query生成一篇假设性的文档,然后根据这个文档的向量去查找相似的N个向量。 核心的原理就是,生成的假设性文档要比query更接近于embedding 空间。

随着版本的迭代,langchain的文档中对hyde的说明有些变化,从源码中可以看到是内置了多种提示词模板的。

PROMPT_MAP = {
    "web_search": web_search,
    "sci_fact": sci_fact,
    "arguana": arguana,
    "trec_covid": trec_covid,
    "fiqa": fiqa,
    "dbpedia_entity": dbpedia_entity,
    "trec_news": trec_news,
    "mr_tydi": mr_tydi,
}

可以参考下面这段代码的实现。

from langchain_openai import OpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import LLMChain, HypotheticalDocumentEmbedder
from langchain.prompts import PromptTemplate
base_embeddings = OpenAIEmbeddings()
llm = OpenAI()
embeddings = HypotheticalDocumentEmbedder.from_llm(llm, base_embeddings, "web_search")
result = embeddings.embed_query("Where is the Taj Mahal?")

Step-Back Prompt

通过首先回答一个 后退一步 的问题,然后将这个问题检索到的答案和 用户的 QA 对 检索到的信息放在一起,让大模型进行回答。

这个提示词的思路就是,如果一个问题很难回答,则可以首先提出一个能帮助回答这个问题,但是粒度更粗、更简单的问题,下图是Step-Back的提示词的实现思路和介绍。

核心提示词可以参考下面这段代码。

You are an expert of world knowledge. I am going to ask you a question. 
Your response should be comprehensive and not contradicted with the following context if they are relevant. 
Otherwise, ignore them if they are not relevant.\n
\n{normal_context}\n
{step_back_context}\n
\nOriginal Question: {question}\n
Answer:

Step-back的提示词可以参考下面这段进行实现和优化。

You are an expert at world knowledge. 
Your task is to step back and paraphrase a question to a more generic step-back question, which is easier to answer. 
Here are a few examples:

Agent

核心是利用大模型的Function call功能和提示词工程,去执行一些策略,比如当有多个数据源时,自动选择需要检索的数据源。

Router

当有多个数据源的时候,使用路由技术,将query定位到指定的数据源。可以参考llamaindex的实现,相对比较简单和清晰。

from llama_index.tools.types import ToolMetadata
from llama_index.selectors.llm_selectors import (
    LLMSingleSelector,
    LLMMultiSelector,
)
tool_choices = [
    ToolMetadata(
        name="covid_nyt",
        description=("This tool contains a NYT news article about COVID-19"),
    ),
    ToolMetadata(
        name="covid_wiki",
        description=("This tool contains the Wikipedia page about COVID-19"),
    ),
    ToolMetadata(
        name="covid_tesla",
        description=("This tool contains the Wikipedia page about apples"),
    ),
]
 
 
selector_result = selector.select(
    tool_choices, query="Tell me more about COVID-19"
)

Post-Process

主要对用户检索之后的上下文进行优化,这里介绍几个比较常用的。

Long-text Reorder

根据论文 Lost in the Middle: How Language Models Use Long Contexts,的实验表明,大模型更容易记忆开头和结尾的文档,而对中间部分的文档记忆能力不强,因此可以根据召回的文档和query的相关性进行重排序。

核心的代码可以参考langchain的实现:

def _litm_reordering(documents: List[Document]) -> List[Document]:
    """Lost in the middle reorder: the less relevant documents will be at the
    middle of the list and more relevant elements at beginning / end.
    See: https://arxiv.org/abs//2307.03172"""

    documents.reverse()
    reordered_result = []
    for i, value in enumerate(documents):
        if i % 2 == 1:
            reordered_result.append(value)
        else:
            reordered_result.insert(0, value)
    return reordered_result

Contextual compression

本质上利用LLM去判断检索之后的文档和用户query的相关性,只返回相关度最高的k个。

from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
from langchain_openai import OpenAI
 
llm = OpenAI(temperature=0)
compressor = LLMChainExtractor.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor, base_retriever=retriever
)
 
compressed_docs = compression_retriever.get_relevant_documents(
    "What did the president say about Ketanji Jackson Brown"
)
print(compressed_docs)

Refine

对最后大模型生成的回答进行进一步的改写,保证回答的准确性。主要涉及提示词工程,参考的提示词如下:

The original query is as follows: {query_str}
We have provided an existing answer: {existing_answer}
We have the opportunity to refine the existing answer (only if needed) with some more context below.
------------
{context_msg}
------------
Given the new context, refine the original answer to better answer the query. If the context isn't useful, return the original answer.
Refined Answer:

Emotion Prompt

同样是提示词工程的一部分,思路来源于微软的论文:

Large Language Models Understand and Can Be Enhanced by Emotional Stimuli

在论文中,微软研究员提出,在提示词中增加一些情绪情感相关的提示,有助于大模型输出高质量的回答。

参考提示词如下:

emotion_stimuli_dict = {
    "ep01": "Write your answer and give me a confidence score between 0-1 for your answer. ",
    "ep02": "This is very important to my career. ",
    "ep03": "You'd better be sure.",
    # add more from the paper here!!
}
 
# NOTE: ep06 is the combination of ep01, ep02, ep03
emotion_stimuli_dict["ep06"] = (
    emotion_stimuli_dict["ep01"]
    + emotion_stimuli_dict["ep02"]
    + emotion_stimuli_dict["ep03"]
)
 
 
from llama_index.prompts import PromptTemplate
 
 
qa_tmpl_str = """\
Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge, \
answer the query.
{emotion_str}
Query: {query_str}
Answer: \
"""
qa_tmpl = PromptTemplate(qa_tmpl_str)

后记

RAG技术是24年重点发展的技术,优化技术和方式层出不穷,适合自己业务的才是最好的。这篇文章后面会逐步更新最新的研究和技术,感兴趣的可以点赞、收藏。

最后谈几点自己的感悟以及参加一些论坛之后的想法,欢迎一起交流学习。

• 开源社区的功能能到70分的水平,有的企业要求至少90分以上才可用

• 召回率很重要,但有的时候更看重准确率

• 制定适合本场景的评价体系,端到端和分模块评价

• 没有万能的解决方案


那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值