深入LLM微调:技术细节、最佳实践与未来发展方向_微调技术

随着LLM技术的蓬勃发展,生成式AI领域具有前所未有的发展机遇,其中以ChatGPT为代表的大语言模型给人们带来了惊喜的同时,也将AI浪潮推向了最高峰。

ChatGTP、LLaMA2等通用大模型具备优秀的推理性能,但在面对复杂多变的业务场景时,往往难以满足多样化的需求。ChatGPT等通用大模型通常需要经过复杂漫长的训练过程,预训练期间需要巨大的算力和存储消耗,大多场景下从0到1训练一个模型不仅成本高昂,而且没有必要,因此基于预训练的模型并对其进行微调成为有价值的研究方向。微调预训练的通用大模型,不仅可以节约成本,也可以使模型更符合特定领域的需求,变得更定制化、专业化。如下图所示,用户基于预训练的基础模型采用合适的微调技术,以定制化的数据集作为输入,经过微调训练最终可输出一个性能更优的微调模型。本文主要调研并梳理了LLM微调常规流程及常用技术,其中介绍了Fine-Tuning(全量参数微调)及Parameter-Efficient Fine-Tuning(高效参数微调),RLHF(基于人类反馈的强化学习),Fine-Tuning全量参数微调成本巨大,应用较少。鉴此本文重点介绍Adapter、Prefix Tuning、LoRA、RLHF 4种常用微调技术的原理,通过归纳整理相关论文及资料,为模型微调工作的技术选型提供参考。

【一一AGI大模型学习 所有资源获取处一一】

①人工智能/大模型学习路线

②AI产品经理入门指南

③大模型方向必读书籍PDF版

④超详细海量大模型实战项目

⑤LLM大模型系统学习教程

⑥640套-AI大模型报告合集

⑦从0-1入门大模型教程视频

⑧AGI大模型技术公开课名额

一、基本概念

1、微调的定义

首先对模型微调下个非严谨的定义,大模型微调(Fine-tuning)是指在预训练模型基础之上,采用标注的高质量数据集或基于人类反馈机制对基础模型进行训练,最终输出具备或增强特定领域能力模型的技术。

2、微调的必要性

全量训练成本高昂

据国盛证券报告《ChatGPT 需要多少算力》估算,GPT-3 训练一次的成本约为 140 万美元,对于一些更大的 LLM(大型语言模型),训练成本介于 200 万美元至 1200 万美元之间。以 ChatGPT 在 1 月的独立访客平均数 1300 万计算,其对应芯片需求为 3 万多片英伟达 A100 GPU,初始投入成本约为 8 亿美元,每日电费在 5 万美元左右。因此全量训练极其高昂,一般企业难以承受。

通用模型难以满足特定领域需求

例如,通用的语言大模型,经过高质量的医疗数据训练,可更加专业的进行医疗对话。在面对“感冒了怎么办?”之类的专业问题,微调前的模型回答可能相对宽泛,比如多喝水,症状严重时注意看医生等,但微调后的模型会基于与用户的多轮对话上下文,给出更精准、更专业的回答,经过医疗数据集微调后的模型,在面对医疗专业知识领域时,将具备更优的性能。

3、微调的价值

经过微调后的模型具备更强的专业能力,诸如在问题回答、语言生成、命名实体识别、情感分析、摘要生成、文本匹配等领域具备更优的性能。例如,基于财经新闻数据的预训练模型经过微调后能够在金融分析、股票预测等领域表现出色;基于医疗数据的预训练模型经过微调后能够提供患者更精准的医疗咨询和用药建议。模型微调后将具备更专业化、特定化的推理能力。

二、微调技术

1、微调流程

模型微调是一个循序渐进、不断优化迭代的系统工程,一般需要经过模型选取、任务定义、数据准备、策略选择、模型配置、模型微调、结果评估、优化迭代、模型测试、模型部署等流程,通过系统化、流程化的模型微调,将输出令人满意的结果。具体步骤简述如下:

  • 模型选取

    选取一个优秀的基础大模型,比如OpenAI的ChatGPT,Meta的LLaMA2等,成熟的大模型有大厂背书及活跃的社区支持,可以具备高质量的模型能力。

  • 任务定义

    定义一个特定领域的任务,比如上文所述的医疗问答任务。

  • 数据准备

    收集标签化的专业数据,比如上文的医疗问答数据可分为训练集和测试集,一部分用于训练,一部分用于测试。

  • 策略选择

    选择合适的模型微调策略,比如下文将详细描述的PERT或RLHF,选择更适合的微调技术。

  • 模型配置

    以第一步选取的基础模型作为起点,完成模型微调前的前置配置。

  • 模型微调

    基于选择的微调技术,不同不断的迭代训练模型,期间不断调整参数并监控模型的损失函数即精准度。

  • 结果评估

    使用测试数据集验证微调后模型的优劣

  • 优化迭代

    基于上一步评估的结果,不断迭代微调过程直到达到满意的预期效果。

  • 模型测试

    使用验证模型的性能。

  • 模型部署

    将微调后满足预期的模型部署后等待投入推理使用

2、Fine-Tuning

Fine-Tuning指的是全量参数微调,训练时间成本高。一般较少使用,因此本文重点介绍高效参数微调,通过冻结参数,局部微调,显著提供微调效率。

3、PERT

  • Adapter

    在《Parameter-Efficient Transfer Learning for NLP 》论文中提出了Adapter方法,论文指出对预训练模型每层中插入下游任务参数,微调时冻结模型主体参数,仅训练特定任务的参数,最终显著减少训练过程中产生的算力成本。为论证Adapter方法的有效性,论文作者基于BERT Transformer模型,对26种类别的文本任务进行GLUE基准测试,最终Adapter展示了令人满意的效果,在GLUE基准测试中,相比较于100%的全量参数微调,每个任务在仅添加3.6%参数的情况下,仅有0.4% 以内的性能差异。

    如下图所示,Adapter结构在Transformer Layer中加入Adapter Layer,位置分别位于多头注意力的投影之后及第二个前馈层之后,训练时固定原始预训练模型参数,仅对新增的Adapter及Layer Norm层进行微调。其中每个Adapter 由2个Feedward前馈层组成,首个前馈层接受Transformer输出作为输入,通过将高维特征d投影至低维特征m以控制模型参数量,低维特征m经过中间非线性层输出,第二个前馈层将低维特征m反向还原为高维度特征d,最后作为Adapter的输出。

经实验结果表明,通过添加并训练少量参数,Adapter方法的性能可媲美全量微调,论证了Adapter方法可作为一种高效的参数微调方法。

  • Prefix Tuning

    基于Prompt的设计灵感斯坦福大学团队在论文中提出的一种通过冻结模型参数,通过连续的特定任务向量而实现的更轻量级模型微调技术。Prefix Tuning属于连续的模板构建,通过把传统人工设计模版中的token替换成可微调的Virtual Token。其中模型输入前添加的连续的针对特定任务的向量序列我们称之为Prefix,通过更新特定任务的Prefix参数大幅提高微调效率。

对于Decoder-only的GPT,prefix只加在句首,模型的输入表示为:

对于Encoder-Decoder的BART,prefix同时加在编码器和解码器的开头:

如下图所示,在下游任务微调时,模型参数被冻结,之后Prefix部分参数被更新,显著提高训练效率。

  • LoRA

Prefix Tuning通过输入序列的前缀加入prefix token,引导模型模型提取x特征相关的信息,以便更好的生成结果y。训练微调过程中,我们只需要冻结模型其余参数,仅单独训练prefix token相关参数即可,每个下游任务均可单独训练一套prefix token,Prefix-Tuning虽然过程看似方便,但也存在以下弊端:

  • 训练难度大

    原始论文指出,训练模型的效果并非严格随prefix参数量单调递增

  • 会降低原始文字prompt表达能力

    为节省计算量和显存,我们一般会固定数据的输入长度,增加prefix之后,留给原始文本数据的空间会被挤压,因此可能会降低原始文本prompt的表达能力,使得输入层有效信息减少。

Prefix Tuning训练难度大,那是否有其他的微调方法呢?LoRA(Low-Rank Adaptation)是微软研究团队提出的一种通过冻结预训练模型参数,在Transformer每一层中加入2个可供训练的A、B低秩旁路矩阵(其中一个矩阵负责降维、另一个负责升维),可大幅减少微调参数量的方法。LoRA整体架构如下图:

如图左侧表示全参微调的场景,参数分为和两部分:

  • :预训练权重 
    
    
  • :微调增量更新权重

全参微调可视为冻结的预训练权重W+微调过程中产生的增量更新权重 ,假设输入为x,输出为y,则有 。

如图右侧表示LoRA微调场景,我们用矩阵A和矩阵B近似表示 :

  • :低秩矩阵A,其中r被称为“秩”,对A进行高斯初始化。
    
    
  • :低秩矩阵B,对B采用零初始化。
    
    

经过拆分,我们将 改写成 的等价形式,微调参数 从降为 ,同时不改变输出数据的维度,即在LoRA下我们可以定义为: 。

其中,论文指出对于AB两个低秩矩阵,会使用超参α(常数)来做调整,以适配更优的微调性能。基于LoRA架构,在原始预训练矩阵的旁路,我们用低秩矩阵A和B来近似代替增量更新权重 ,训练过程中通过固定预训练权重 ,只对低秩矩阵A和B进行微调训练,可大幅提高效率,据论文统计,采用LoRA方法在微调GPT3 175B时,显存消耗从1.2TB降至350GB,极大的降低了训练开销。

4、RLHF

RLHF(Reinforcement Learning from Human Feedback)是基于人类反馈的强化学习。传统基于prompt提示词生成的结果相对主观并依赖上下文,缺少人类的偏好和主观意见。RLHF中使用人类反馈作为性能衡量标准,不断通过反馈结果来优化模型,可使训练后的模型更符合人类预期。RLHF涉及多个模型和多个训练阶段,一般分为以下3大核心步骤:

  • 预训练模型

    使用标注过的数据来调整预训练模型参数,例如OpenAI在其InstructGPT中采用较小版本的GPT-3,Anthropic使用1000万-52B参数的Transformer进行训练使其更好的适应特定任务领域。

  • 训练奖励模型

    RM奖励模型用于评估文本序列质量,它接收一系列文本并返回数值,数值对应人类的偏好程度。训练数据通常由多个语言模型生成的文本序列组成,这些序列经过人工评估或使用其他模型(比如ChatGPT)进行打分。奖励模型不断指导模型生成更符合人类预期的高质量文本。

  • 基于强化学习微调

    利用上一步输出的奖励值,采用强化学习进一步微调,在强化学习中需要定义状态空间、动作空间、策略函数及价值函数。其中,状态空间使输入的序列分布,动作空间是全量的token(词汇表中的词),价值函数基于奖励模型的输出和策略约束,用于评估给定状态下采取特定动作的价值,策略函数根据当前状态选择下一个动作(token),最大化奖励。

三、讨论与展望

本文重点介绍了几种常用微调技术,各种技术的特点描述总结如下表所示:

模型微调过程中可根据实际场景选择合适的微调方案,以获得更优的性能。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景
学习计划:
  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值