全面!AI大模型介绍:从Gemini到OpenAI Q*

一. 前言

本文全面探讨了生成式人工智能(AI)的发展前景,特别是专家混合(MoE)、多模式学习的影响,以及对通用人工智能(AGI)的推测进步。文章批判性地研究了生成式AI的现状和未来轨迹,探索了谷歌的Gemini和预期的OpenAI Q*项目如何重塑各领域的研究重点和应用。文章评估了这些技术的计算挑战、可扩展性和现实意义,并强调了它们在医疗、金融和教育等领域的潜力。同时,文章还讨论了人工智能主题的预印本激增所带来的学术挑战,以及它们对同行评审和学术交流的影响。研究强调了在AI开发中纳入伦理和以人为本的方法的重要性,并提出了平衡和谨慎使用MoE、多模态和AGI的未来AI研究战略。

人工智能的历史背景可以追溯到艾伦·图灵的“模仿游戏”和首批神经网络及机器学习的发展。这些早期基础为当今的先进模型奠定了基础。随着深度学习和强化学习的兴起,人工智能领域出现了复杂的混合专家模型和多模态系统,展示了该领域的动态性和持续进化。大型语言模型(LLMs)的出现,特别是ChatGPT和谷歌的Gemini,是人工智能发展的关键转折点。这些先进AI系统的开发重塑了研究领域。Gemini采用专家混合方法,能够处理各种输入和多模式方法。同时,OpenAI的Q_项目将LLM的功能与复杂算法结合,进一步推动研究环境的动态发展。随着LLM领域的进步,新技术如双子座和Q_促进了多模态和对话驱动学习的研究。预印本快速传播知识,但减少了学术审查。GPT和ChatGPT等模型及其商业应用具有巨大影响力。人工智能正在重塑行业,改变经济格局,既带来机遇也面临挑战。预印本数量的激增引发了对信息真实性的担忧。学术界需要共同努力,完善研究方向,审慎对待未经严格审查的研究。本调查旨在审视双子座发布和Q项目投机性讨论背后的生成式人工智能研究趋势。本文聚焦MoE、多模态和AGI对生成式AI模型的影响,并深入探讨法学硕士全景中的新兴前景。调查避免了对未公开Q-Star倡议的猜测,而是批判性地评估了现有研究的过时或无意义潜力。人工智能的进步不仅增强了语言分析和知识合成能力,还在多个领域应用了基于统计的自然语言处理技术。然而,人工智能必须符合人类伦理和价值观的长期需求。Jim Fan博士关于Q的见解为前瞻性技术构建和技能提供了宝贵视角。本研究使用“大型语言模型”和“生成式人工智能”等关键词进行结构化文献搜索,并定制了过滤器以识别2017年至2023年期间发表的相关文章。本文剖析了双子座和Q*的技术分支,并确定了三个新兴的研究领域——MoE、多模态和AGI——它们将重塑生成式人工智能的研究格局。这项调查系统地绘制了一个研究路线图,综合并分析了生成式人工智能的当前和新兴趋势。本文主要内容如下:

  1. 详细考察生成式人工智能领域的发展情况,强调技术进步和创新在人工智能领域中的广泛影响。

  2. 分析先进的生成式人工智能系统对学术研究的变革性影响,并探讨这些发展如何改变研究方法、设定新趋势并可能导致传统方法的过时。

  3. 全面评估整合生成式人工智能所面临的伦理、社会和技术挑战,强调协调技术与伦理规范、确保数据隐私和制定全面治理框架的迫切需要。

二. 背景:生成人工智能的演变

生成式人工智能的崛起标志着多个重要里程碑。从单用途算法到像OpenAI的ChatGPT这样的LLM和最新的多模式系统,人工智能领域发生了转变,其他领域也受到颠覆。

语言模型的演变经历了从统计方法到复杂神经网络架构的发展,支撑了当今的LLM。这种演变追求更准确地反映人类语言细微差别,推动机器理解和生成界限。但快速进步也带来伦理和安全挑战,需要重新评估模型开发和使用目的。

语言模型起源于20世纪80年代后期的统计方法,从基于规则的算法向NLP中的机器学习算法转变。早期模型基于n-gram,为语言结构提供了基本理解。随着计算能力提高,NLP转向统计模型,IBM开发的复杂统计模型凸显了这些方法的重要性。90年代,统计方法在NLP中确立,n-grams成为重要工具。1997年引入的LSTM网络引领了神经网络模型的发展。

深度学习改变了NLP领域,催生了GPT、BERT等LLM以及OpenAI的ChatGPT。最近的模型如GPT-4和LLaMA通过集成先进技术,如变换器架构,展现了快速发展。这些模型在语言理解和生成方面达到新高度,利用庞大计算资源和数据集。ChatGPT在多个领域展现出色对话技能和理解能力,获得市场强烈需求,推动跨学科研究探索其在各领域的应用。其广泛应用引发AI领域重要辩论,特别是关于人工智能意识和安全性的辩论,因其类似人类的交互能力引发重大伦理问题,凸显了AI开发中强有力治理和安全措施的必要性。这种影响超出了技术成就,塑造了关于AI在我们世界中的作用和未来的文化和社会讨论。LLM的进步,如GPT和BERT等模型的开发,为Q的概念化铺平了道路。这些模型的可扩展架构和广泛训练数据是Q能力的基础。ChatGPT在情境理解和对话AI的成功,为Q设计原则提供了依据,展现了更复杂、情境感知和自适应语言处理能力的发展轨迹。同样,多模式系统如Gemini的出现,整合了文本、图像、音频和视频,反映了Q可扩展的进化路径,结合LLM的多功能性与高级学习和路径查找算法,获得更全面的AI解决方案。

  1. LLMs的微调、幻觉减少和一致性:LLMs的进步强调了微调、幻觉减少和一致性的重要性。微调涉及根据特定任务调整预训练模型,提高了LLMs在各种上下文中的适应性,但仍存在挑战,特别是在偏见缓解和模型泛化方面。幻觉减少是LLMs中的持续挑战,涉及生成自信但错误的信息。尽管有所努力,但完全消除幻觉仍是一项艰巨任务。校准LLM输出与人类价值观和伦理的一致性是一个研究领域,旨在将人类偏好嵌入AI系统中。尽管有进步,但这些领域仍面临挑战,需要跨学科研究。

  2. Mixture of Experts架构:在LLM中采用Mixture of Experts架构是AI技术的关键演变。这种方法通过高级模型如Google的Switch Transformer和MistralAI的Mixtral-8x7B得以体现,提高了建模效率和可扩展性。MoE的主要优势在于处理大规模参数规模,减少内存占用和计算成本。这种跨专业专家的模型并行性允许训练具有数万亿个参数的模型,增强了其在少样本学习和其他复杂任务中的能力。MoE在医疗保健和金融等领域具有实用性,可提高诊断准确性、治疗个性化和风险评估等方面的能力。尽管MoE有诸多优点,但面临如动态路由复杂性、专家不平衡性和概率稀释等技术难题。这些问题需复杂解决方案以发挥MoE潜力。同时,MoE不能解决AI伦理对齐问题,其复杂性可能使确保伦理合规性和与人类价值观对齐复杂化。因此,在确保模型的安全性、伦理对齐和透明度方面仍需首要关注。

随着多模态AI的兴起,AI发展迈入变革时代,为机器解读和互动带来革命性变化。Gemini作为一款开创性的多模态对话系统,超越传统文本模型,融合文本、图像、音频和视频等数据类型。其核心双编码器结构实现复杂多模态语境化,超越单编码器能力。Gemini还集成结构化知识,采用专门训练范式设定新基准。相较于ChatGPT-4,Gemini在处理广泛模式、性能、可扩展性、代码生成及透明度和可解释性方面均表现出优势。然而,Gemini在复杂推理任务中的现实表现仍需评估。2)多模态系统的技术难题包括数据集的多样性和强大性、系统可扩展性、用户信任和系统可解释性。数据采集和注释的问题导致数据倾斜和偏差,需要通过数据增强、主动学习和迁移学习等策略进行管理。同时处理各种数据流的计算需求,需要强大的硬件和优化模型架构。先进的算法和多模态注意力机制能平衡不同输入媒体的注意力并解决模态间的冲突。可扩展性问题因硬件资源有限而加剧,需校准多模态编码器以实现数据集成。完善评估指标、全面的数据集和统一的基准,以及多模态环境中的可解释人工智能,对增强用户信任和系统可解释性至关重要。解决这些挑战对于多模态人工智能系统的进步和无缝智能交互至关重要。

3)多模态人工智能在商业和自动驾驶等领域带来好处,但也面临复杂的伦理和社会挑战。DeepFake技术生成真实视频、音频和图像的能力带来错误信息和操纵的风险,影响公众舆论、政治格局和个人声誉,损害数字媒体真实性,提出社会工程和数字取证问题。多模态人工智能处理不同数据源,放大隐私问题,引发个人同意和权利问题。此外,多模态人工智能可能传播和放大偏见和刻板印象,必须有效解决算法偏见。道德发展需关注透明度、同意、数据处理协议和公众意识,制定数据使用标准和防范未经同意利用个人信息。人工智能素养计划的发展对于帮助社会理解和负责任地互动至关重要。跨学科合作是确保系统符合社会价值观和道德原则的关键。

C. 推测进展和时间趋势

Q项目融合了LLM、Q-learning和AStar算法,体现了人工智能的重大飞跃。从以游戏为中心的AI系统到Q*的广泛应用,展示了AI系统的进化轨迹。1. 从AlphaGo到Q-Star的转变代表了AI的重大进步。AlphaGo展示了深度学习和树搜索算法在围棋等明确规则环境中的有效性,突显了AI在复杂战略和决策制定方面的潜力。而Q-Star则预期超越这些限制,结合强化学习的优势、LLM的知识、自然语言处理、创造力与通用性以及路径查找算法的战略效率。这种融合将使AI系统能够超越棋盘游戏,与人类进行微妙的交互,优化决策路径并从交互中学习,提高适应性和智能。这种进步展示了AI研究的动态和不断发展,为AI应用开辟了更多可能性,使其能够更广泛、更深入地融入人类生活。

  1. 预期的Q项目将结构化学习与创造力相结合,代表AI领域的突破性进展。通过整合Q-learning和A算法与LLMs的创造力,Q有望超越最近的创新如Gemini。Q的融合展现了对结构化、目标导向学习与生成性、创造力能力的整合,可能超越Gemini的成就。这种整合使AI系统不仅能处理复杂的多模态数据,还能在结构化任务中自主导航,同时进行创造性问题解决和知识生成。这一进步预示着生成AI领域的重大变革,展示了AI在持续发展中备受期待的重要潜力。

三. 当前的生成人工智能研究的分类

生成式人工智能领域的综合分类涵盖了模型架构和训练技巧的关键研究领域。表1作为现状基础框架,指导人们应对模型架构、训练方法、应用领域、伦理影响和技术前沿的复杂性。模型架构方面,Transformer模型因其高效和可扩展性在NLP领域取得了重大发展,同时在计算机视觉方面也有显著进步。RNN在序列建模中表现出色,对处理语言和时序数据特别有效。MoE模型通过模型并行性提高效率,能处理大量参数并专业处理复杂任务。多模态模型整合了多种感官输入,如文本、视觉和音频,对全面理解复杂数据集至关重要。在训练技巧方面,监督学习使用标记数据集进行准确预测,已成为各种应用程序的重要部分,最近的进展集中在增强模型性能和泛化能力。• 无监督学习:对发现未标记数据中的模式至关重要,是特征学习和聚类等任务的核心。自动编码器、生成对抗网络等技术进步,显著扩展了无监督学习的适用性,增强了更复杂的数据生成和表征学习能力。这对理解和利用非结构化数据中的复杂结构至关重要,凸显了无监督学习技术的多功能性和深度。

• 强化学习:以适应性和优化能力为特征,在决策和自治系统中越来越重要。深度Q网络和近端策略优化等算法的发展,显著提高了强化学习的有效性和适用性,特别是在复杂和动态的环境中。强化学习通过交互式反馈循环优化决策和政策,已成为训练人工智能系统的重要工具,特别适用于需要高度适应性和决策精确度的场景。

• 迁移学习:强调人工智能训练的多功能性和效率,允许模型将从一个任务获取的知识应用于不同但相关的任务,显著减少了对大型标记数据集的需求。迁移学习通过使用预先训练的网络进行微调,简化了训练过程,增强了跨不同任务的适应性和性能,特别适用于需要获取大量标记数据的场景。

C. 应用领域

• 自然语言理解(NLU):是增强人工智能系统中人类语言的理解和语境化的核心,涉及语义分析、命名实体识别等关键功能。NLU的进步对提高人工智能在各种背景下解释和分析语言的能力至关重要。最近的进展突出了基于大型Transformer的模型,如BERT和GPT-3,显著推进了NLU领域的发展。

• 自然语言生成(NLG):强调训练模型以生成连贯的、上下文相关的和创造性的文本响应,是聊天机器人、虚拟助手等工具的关键组成部分。NLG涵盖主题建模、话语规划等挑战。最近NLG功能的激增(以GPT-3等先进模型为代表)显著提高了文本生成的复杂性和细微差别,扩大了NLG在领域的范围和适用性。对话式AI:此子领域旨在打造能自然、流畅并感知上下文的人机交互系统,重点在对话建模、回答问题和多轮对话跟踪。在金融和网络安全中,AI的预测分析已改变风险评估和欺诈检测,Meena7和BlenderBot8等大型预训练模型则显著提升了AI交互的同理心和响应能力,从而提高了用户满意度和参与度。

创意AI:这是一个新兴子领域,涉及文本、艺术、音乐等领域,通过生成图像、音频和视频等内容来展现AI的创意潜力。应用包括创意、讲故事、诗歌、音乐创作等。虽然寻找合适的数据表示、算法和评估指标是挑战,但此领域正重新定义技术与艺术的交叉点,推动自动化和新的艺术表达形式的探索。

合规与道德:随着AI技术的广泛应用,道德和合规性变得至关重要。需要开发道德AI框架来确保系统的构建强调道德、公平和透明度。这涉及减轻偏见、隐私保护、数据安全以及AI的问责制。偏差缓解、数据安全和遵守法律标准都是关键挑战。

偏差缓解:确保AI系统的公平性和代表性是关键,需要平衡数据收集、算法调整和正则化技术来减少偏差。持续监控和偏差测试也至关重要。处理交叉偏见和理解因果相互作用是此领域的挑战。

数据安全:确保AI数据的安全性涉及保护数据机密性、遵守同意规范和防范漏洞。遵守法律标准、限制目的和数据最小化是关键要求。同时,需要解决数据主权和版权问题,并采取加密、访问控制和安全评估等措施来保护用户隐私。•人工智能伦理:关注公平、问责和社会影响,解决人工智能与人类价值观不一致带来的伦理挑战,需要伦理治理框架、多学科合作和技术解决方案。同时,确保模型开发全生命周期的可追溯性、可审计性和透明度也很重要。然而,实际应用中这些举措的采纳并不均衡,表明需要更全面的道德实践。

•隐私保护:重点在于维护数据机密性和完整性,采用匿名化和联合学习等策略减少数据暴露风险。尽管已有这些努力,但实现真正的匿名性仍面临挑战,突显出有效防范侵入性监视的复杂性。遵守隐私法和实施安全的数据处理实践至关重要。

•自监督学习:利用未标记数据进行模型训练,减少手动标记和模型偏差,结合生成模型如自动编码器和GAN进行数据分布学习和原始输入重建。此外,还采用对比方法如SimCLR和MoCo,以及受NLP启发的自我预测策略。这些不同方法的整合有助于提升人工智能自主训练能力。

•元学习:让模型使用有限数据快速适应新任务和领域,涉及掌握优化过程,确保模型在数据有限情况下快速适应和执行不同任务。该技术专注于小样本泛化,强调在开发多功能和适应性强的系统中的重要性。

•微调:根据特定领域或用户偏好定制预训练模型,提高应用准确性和相关性。主要有端到端微调和特征提取微调两种方法。这种技术确保模型更适应特定用户需求或领域要求,提高通用性和环境适用性。

•人类价值调整:协调人工智能模型与人类道德和价值观,确保决策和行动符合社会规范和道德标准。涉及道德决策过程整合和输出调整以符合人类道德价值观。这在人工智能与人类紧密互动的场景中尤为重要,以确保决策不仅在技术上合理,而且在道德和社会上负责。生成式人工智能的新趋势正在推动技术与人类交互的发展,标志着向更集成、交互和智能的系统转变,拓展了AI的可能性。关键发展包括:

  • 多模态学习:此领域的快速发展将语言理解、计算机视觉和音频处理相结合,提供更丰富的多感官上下文感知。如Gemini模型,已在多模态任务中展现卓越性能,但仍面临处理不同数据类型、开发综合数据集和建立评估基准的挑战。

  • 交互式和协作式AI:旨在增强AI模型在复杂任务中与人类的协作能力,改善用户体验和效率,涉及可解释性、理解人类意图和行为以及AI和人类之间的可扩展协调。更直观和交互式的AI系统能协助和增强人类能力。

  • AGI开发:追求模拟人类认知的全面AI系统,涉及深度和广度的结合,不仅复制人类智能,还构建能自主执行各种任务的系统,展示类似于人类的适应性和学习能力。

  • AGI遏制:关注高度先进AI系统的潜在风险,确保技术熟练且符合人类价值观和社会规范。建立安全协议和控制机制至关重要,关注减轻偏差、解决分布变化及纠正虚假相关性,以防止意外的社会后果。

四. 创新视野

MoE 模型架构代表了基于 Transformer 的语言模型的开创性进步,提供了无与伦比的可扩展性和效率(图 4)。正如 1.6 万亿参数 Switch Transformer [285] 和 8x7B 参数 Mixtra [286] 等最新模型所证明的那样,基于 MoE 的设计正在迅速重新定义跨不同语言任务的模型规模和性能的前沿。

A. 核心概念与结构

MoE模型是神经网络设计的重要创新,其利用稀疏驱动的架构,将密集层替换为包含多个专家网络的稀疏MoE层,每个专家专用于特定子集的训练数据或任务。动态分配的门控机制优化计算资源,并适应任务的复杂性。虽然MoE模型在预训练速度上有显著优势,但在微调方面面临挑战,需要大量内存进行推理。其结构包含交替的变压器层和路由器层,路由器层负责专家路由,从而允许参数显著扩展和高级专业化。

B. 训练与推理效率

MoE模型,如Mixtral 8x7B,以卓越的预训练速度著称,但在微调时因需加载所有专家而受阻,且需要大量VRAM进行推理。最新进展带来显著的训练成本效率,特别是在编码器-解码器模型中,有时成本节省高达五倍。创新如DeepSpeedMoE减少了MoE模型大小,优化了推理,提高了效率。分布式MoE训练和推理的进展,如Lina,通过增强张量划分解决了通信瓶颈,大幅减少了训练和推理时间,从而扩展了人工智能的潜在应用。

C. 负载均衡与路由器优化有效负载平衡对MoE模型至关重要,它确保专家间计算负载均匀分布,其中路由器网络在平衡方面发挥关键作用,对模型稳定性和性能至关重要。路由器Zloss正则化技术的发展解决了专家不平衡问题,通过微调门控机制确保更公平的工作负载分配,提高模型性能并减少训练时间和计算量。专家容量管理策略通过设置代币数量阈值调节专家处理能力,避免瓶颈,使模型运行更高效和精简。

MoE模型在并行性和服务技术方面表现出色,对大规模神经网络产生重大影响。例如,DeepSpeed-MoE引入高级并行模式,优化推理中的延迟和吞吐量,提供可扩展的解决方案。模型在多语言任务和编码等应用中表现出色,具备处理复杂任务的能力。此外,模型通过次线性缩放提高计算效率,并利用模型压缩技术减少模型大小,提供端到端训练和推理解决方案,增强速度和成本效率。

未来研究可关注稀疏微调技术、指令调整方法和路由算法的优化,以充分利用性能和效率增益。随着模型参数规模扩大,MoE在科学、医疗、创意和现实应用中具有巨大潜力。此外,研究还可关注微调过程中的超参数自动调整,以优化准确性、校准和安全性。随着人工智能社区对MoE方法的大规模研究,这些模型有望在语言、代码生成、推理和多模式应用方面取得新突破,并在教育、医疗保健、财务分析等领域产生广泛影响。

五 Q* 大模型的推测功能

在新兴的人工智能领域,令人期待的 Q* 项目是潜在突破的灯塔,预示着可能重新定义人工智能能力格局的进步(图 5)。

图 5:推测的 Q* 功能的概念图

A. 增强通用智能

Q* 在通用智能领域的发展代表了从专业人工智能到整体人工智能的范式转变,表明该模型的认知能力类似于人类智能。这种高级形式的通用智能涉及集成不同的神经网络架构和机器学习技术,使人工智能能够无缝地处理和合成多方面的信息。通用适配器方法,镜像 T0 等模型,可以赋予 Q* 快速吸收各个领域知识的能力。这种方法使 Q* 能够学习适应性强的模块插件,增强其处理新数据类型的能力,同时保留现有技能,从而形成将狭窄的专业知识结合到全面、自适应和多功能推理系统中的人工智能模型。相应的准数学公式可以表示为:

其中:EGI:“增强通用智能”,NNi:一组多样化的神经网络架构。MLTi:各种机器学习技术。L :这些组件的集成。⊙:神经网络和机器学习技术之间的功能交互。

人工智能的这种进步表明,一种不仅与人类认知灵活性相媲美,而且可能超越人类认知灵活性的智能出现了,这对促进跨学科创新和解决复杂问题具有深远的影响。据推测,Q*的能力带来了复杂的伦理影响和治理挑战。随着人工智能系统达到更高的自主性和决策水平,建立强有力的伦理框架和治理结构以确保负责任和透明的人工智能发展至关重要。这涉及减轻与先进人工智能能力相关的潜在风险,强调需要全面和动态的伦理准则,这些准则随着人工智能的发展而发展。

B. 高级自学与探索

在高级人工智能开发领域,Q* 预计将代表自学习和探索能力的重大演变。据推测,它利用了复杂的策略神经网络(NN),类似于 AlphaGo 中的神经网络,但在处理语言和推理任务的复杂性方面进行了实质性的增强。这些网络预计将采用先进的强化学习技术,例如近端策略优化(PPO),它可以稳定策略更新并提高样本效率,这是自主学习的关键因素。这些神经网络与尖端搜索算法的集成,可能包括树或思维图的新颖迭代,预计将使 Q* 能够自主导航和吸收复杂信息。这种方法可以通过图神经网络来增强元学习能力,使 Q* 能够快速适应新的任务和环境,同时保留以前获得的知识。相应的准数学公式可以表示为:

其中:ASLE:“高级自学习和探索”RL:强化学习算法,特别是近端策略优化(PPO)。P NN:策略神经网络,适用于语言和推理任务。SA:复杂的搜索算法,如树或 Graph of Thought.GNN:将图神经网络纳入元学习。×:RL 与 GNN 的跨功能增强。

这些能力表明,该模型不仅限于理解现有数据,还能主动寻求和综合新知识,有效地适应不断变化的场景,而无需频繁的再训练。这标志着超越当前人工智能模型的飞跃,实现了前所未有的自主性和效率。

C. 超凡的人类理解力

据推测,Q* 实现卓越的人类理解水平的愿望取决于多个神经网络的高级集成,包括价值神经网络 (VNN),与 AlphaGo 等系统中的评估组件并行。该网络将超越评估语言和推理过程的准确性和相关性,深入研究人类交流的微妙之处。该模型的深度理解能力可以通过先进的自然语言处理算法和技术来增强,例如 DeBERTa 等 Transformer 架构中的算法和技术。这些算法将使 Q* 不仅能够解释文本,还能解释微妙的社会情感方面,例如意图、情感和潜在含义。Q* 结合了情感分析和自然语言推理,可以探索社会情感洞察的各个层面,包括同理心、讽刺和态度。相应的准数学公式可以表示为:

其中:SHLU:“高级人类水平的理解”。V NN:价值神经网络,类似于 AlphaGo 等系统中的评估组件。NLP:一组先进的NLP算法。⊕:VNN评估与NLP算法的结合。alg:NLP 集中的各个算法。

这种超越当前语言模型的理解水平将使 Q* 在同理心、上下文感知交互方面表现出色,从而在人工智能应用程序中实现个性化和用户参与的新梯队。

D. 高级常识推理

Q* 在高级常识推理方面的预期发展预计将集成复杂的逻辑和决策算法,有可能结合符号人工智能和概率推理的元素。这种集成旨在赋予 Q* 对日常逻辑的直观掌握和类似于人类常识的理解,从而弥合人工智能和自然智能之间的重大差距。Q* 推理能力的增强可能涉及图形结构的世界知识,结合类似于 CogSKR 等模型中的物理和社会引擎。这种基于物理现实的方法有望捕捉和解释当代人工智能系统中经常缺乏的日常逻辑。通过利用大规模知识库和语义网络,Q* 可以有效地导航和响应复杂的社会和实际场景,使其推理和决策更贴近人类的经验和期望。相应的准数学公式可以表示为:

其中:ACSR:“高级常识推理”。LogicAI 和ProbAI:分别是符号AI 和概率推理组件。WorldK:图结构世界知识的整合。⊙:这些要素的综合运算,进行常识推理。

E. 广泛的现实世界知识整合

据推测,Q* 整合广泛的现实世界知识的方法涉及使用先进的形式验证系统,这将为验证其逻辑和事实推理提供坚实的基础。这种方法与复杂的神经网络架构和动态学习算法相结合,将使 Q* 能够深入了解现实世界的复杂性,超越传统人工智能的限制。此外,Q* 可能会采用数学定理证明技术进行验证,确保其推理和输出不仅准确,而且具有道德基础。在此过程中纳入道德分类器进一步增强了其提供可靠和负责任的理解以及与现实世界场景交互的能力。相应的准数学公式可以表示为:

其中:ERWKI:“广泛的现实世界知识整合”。F V S:形式验证系统。NN:神经网络架构。LT P:数学定理证明逻辑和事实的有效性。EC:道德分类器的合并。⊗:知识综合和道德统一的全面整合。

此外,Q* 的推测能力有可能显着重塑就业市场和劳动力动态。凭借其先进的功能,Q* 可以自动执行复杂的任务,从而导致工作要求的转变和新技能需求的出现。这就需要重新评估劳动力战略和教育范式,使它们与不断发展的技术环境保持一致,并确保劳动力有能力与这些先进的人工智能系统互动和补充。

六AGI 的预计功能

AGI 代表着人工智能的一次变革性飞跃,致力于在软件范式中反映人类的认知能力(图 6)。AGI 的发展以先进的自学习能力为标志,利用策略神经网络和复杂的强化学习技术进行自主适应。思想树/思维图等算法与这些网络的集成预示着未来 AGI 可以独立获取和应用跨不同领域的知识。

图 6:预计 AGI 功能的概念图

A. 自主学习的革命

AGI 预计将彻底改变自学和探索方式,超越当前人工智能模型对训练数据的依赖,实现自主学习和解决问题的水平。这将减少频繁再训练的需要,并促进动态适应,响应不断变化的场景。

B. 认知能力的拓展

AGI 有望集成各种架构,实现一定程度的通用智能,复制人类认知的多方面本质。通用适配器方法可促进不同信息的快速同化,使AGI 成为能够跨多个领域执行任务的系统,具有类似于人类智力的适应性。当前趋势表明,AGI 在先进医疗保健诊断中具有潜在应用,能够彻底改变医疗诊断和治疗。

C. 提升理解和互动

AGI 预计将实现对人类语言和社会情感微妙之处的无与伦比的理解,参与复杂的、有同理心的和上下文感知的交互。这将彻底改变人工智能系统通信方式,实现更深入的相互理解和作用。

D. 高级常识推理

符号人工智能和概率推理集成到 AGI 中,将使这些系统天生掌握常识,弥合人工智能和自然智能之间的差距。AGI 将能够有效地导航和响应现实世界场景,与人类紧密结合进行思维过程。

E. 知识的整体整合

AGI 在形式验证系统的指导下整合广泛的现实世界知识的潜力暗示了未来的能力。其输出不仅准确而且具有道德基础,将能够与现实世界的复杂性进行负责任的互动。AGI 的预计能力将扩展到应对气候变化等重大全球挑战,发挥更好、更关键的作用。

F. AGI发展的挑战和机遇

AGI的发展既充满挑战,也充满机遇。虽然 AGI 承诺提高创意领域的生产力和跨模式生成技术的创新,但数据偏差、计算效率和道德影响等重大挑战仍然存在。这些挑战需要在 AGI 开发中采取平衡的方法,重点关注数据管理、高效系统和社会影响。虽然预测实现真正通用人工智能的时间表仍然是推测性的,但认识到潜在的障碍至关重要,例如在追求通用人工智能的过程中需要持续的研究和伦理考虑,确保负责任和认真的发展。

七. 对生成人工智能研究分类的影响分析

随着先进人工智能发展如MoE、多模态和AGI的出现,生成式人工智能研究的格局正在发生重大转变。本节将分析这些发展如何重塑生成人工智能的研究分类。生成式AI的进步推动了各研究领域的变革,为此我们建立了表二中所述的标准,来量化和分类这些影响。这些标准基于技术进步与研究重点之间的动态相互作用。我们的分析框架涵盖了从新兴到过时的不同梯度,反映了AI研究领域的重塑程度。我们将其分为五个类别进行评估,并认识到各领域受影响的程度不一。这种多层次的方法借鉴了技术颠覆的历史模式和科学探究的适应性。

表Ⅱ 分析对生成人工智能研究的影响的标准

在评价层级中,“新兴方向”展现了AI推动下的未知前景,基于其历史发展脉络。而“需要转变方向的领域”则指已建立但处于转折点的研究领域,需采用新范式并全面改革。“仍然相关”肯定了某些领域的顽强性,通过解决持久科学问题或固有适应性来抵抗AI创新浪潮。相反,“可能变得冗余”的领域需前瞻性战略和资源重新分配来防止科学停滞。“本质上无法解决”的挑战提醒我们存在无法解决的困境,源于伦理和文化多样性。

影响分析概述部分关注MoE、多模态和AGI的最新进展,评估其对生成AI研究的影响。该评估考虑新研究方向的出现、现有领域的重新调整、某些方法论的持续相关性以及其他方法的潜在冗余,并概括在表三中。结果显示,Transformer模型在多模态中相关性为3,总分为11,需与先进系统集成以增强性能和适应性。RNN面临相关性下降的挑战,总分7,可能在多模式任务中保留一些相关性。MoE模型总分12,在处理多模态数据和通用智能方面具有重要性。多模态模型总分13,为AGI追求提供了新的途径,对综合多种信息至关重要。2) 对训练技术的影响:

监督学习在MoE中得分为4,多模态中得分为3,AGI背景下为2,总分为9。尽管需适应MoE框架,但仍与多模式AI模型相关。随着AGI转向更自主的学习方法,对广泛标记数据集的依赖可能减少,导致其重要性下降。

无监督学习在MoE和AGI中的重定向要求均为4分,多模态中保持相关性为3分,总分为11分。在MoE中,无监督学习需调整,尤其在任务分配方面。对于理解未标记数据传统至关重要技术。,在专注于AG更I先进的中自我,发现和无内在监督学习预计将学习超越机制。

强化学习在MoE中得分为3,需重定向,多模态中得分为4,被确定为新兴研究领域,在AGI中得分为5,总分为12分。在优化MoE模型结构方面发挥重要作用。在多模态领域,需进行战略转变以管理复杂交互。对于AGI而言,强化学习成为关键领域,特别是在开发自主系统方面。

迁移学习在MoE中得分为3,多模态中得分为5,AGI中得分为4,总分为12分。在教育部框架中,利用不同专家知识仍重要。在多模式环境中,迁移学习变得更重要,促进不同模式间的学习迁移。随着通用人工智能的发展,这项技术预计将发生重大变化,以满足更广泛和更通用的知识应用。

  1. 对应用领域的影响:

自然语言理解保持稳定的相关性,在MoE和多模态方面得分为3,AGI方面得分为5,总分为11分。MoE模型通过处理大型、多样化数据集来提高NLU的精度和深度。在多模式人工智能中,NLU仍是理解不同数据格式语言的关键组成部分。随着AGI的进步,NLU预计将经历重大扩展,迈向更先进、类人的理解和解释能力。

自然语言生成在MoE中得分为3,需重定向,多模态中得分为4,被确定为新兴研究领域,在AGI中得分为5,总分为12分。MoE的可扩展性对增强NLG至关重要。在多式联运背景下,NLG可能需进行战略调整以与其他方式协调。随着AGI的发展,NLG预计将涉足新的研究领域,特别是在创建反映类人创造力和适应性的内容方面。

对话式人工智能在MoE中得分为4,多模态和AGI中均为新兴研究领域,总分为14分。虽然MoE增强了对话式AI,但可能需进行战略变革以充分利用分布式专业知识。多种模式的集成为对话式人工智能开辟新途径,将其范围扩展到包括各种感官数据。AGI的发展将为这一领域带来革命性进步,为更加自主、情境感知和类人交互铺平道路。创意AI在MoE中的重定向要求得分为4分,多模态和AGI中新兴研究方向得分为5分,总分为14分。创意AI可能需要调整,以利用生成新颖内容的能力。多模式结合提供新研究机会,有望拓宽创意AI能力。

合规性和道德方面,MoE、多模态和AGI背景下偏差缓解得分为4和5分,总分为13分。MoE架构需新偏差缓解方法,多模式系统需解决不同数据类型偏差。AGI需综合方法理解和解决偏见。

数据安全在MoE、多模态和AGI中保持相关,得分为3,总分为9分。数据安全基本原则仍重要,需针对分布式性质和不同数据类型制定策略。AGI安全措施可能更复杂。

AI伦理在MoE和多模态中得分为4分,需重定向,AGI面临本质挑战得分为1分,总分为9分。MoE模型透明度需重新评估道德考虑。多模式AI需新伦理方法,AGI伦理挑战复杂且难以完全解决。

隐私保护在MoE、多模态和AGI中重定向需求得分为4分,总分为12分。MoE系统需重新评估隐私保护技术处理多专家数据。多模式AI需量身定制隐私策略,AGI需先进隐私保护方法。

对高级学习的影响:MoE背景下自监督学习需重定向得分为4分,多模态中新兴研究方向得分为5分,AGI中自监督学习仍相关得分为3分,总分为12分。元学习在MoE和多模态中保持相关性得分为3分,AGI中标记为新兴研究方向得分为5分,总分为11分。微调在MoE和多模态中仍相关得分为3分,AGI中可能多余得分为2分,总分为8分。在所有环境(MoE、多模态和AGI)中,AI与人类价值观一致性的挑战本质上无法解决(△),总分为3。这源于MoE的复杂和多样任务、多模态AI中的多种数据类型集成,以及AGI的广泛认知能力。

多模态学习作为新兴方向(ր),在MoE和AGI中均得到5分,其整合多种数据类型的能力至关重要。它是多模态领域的核心(↔),得分为3,对多模态AI开发至关重要。总体影响得分为13。

交互式和协作式AI在MoE中需重定向(֒→),得分为4,以适应更多交互式元素。多模态中的交互和合作是核心(↔),得分为3,尤其在机器人和虚拟助手领域。AGI在交互式AI方面的进步使其成为新兴研究领域(ր),得分为5。总分为12。

AGI发展需在MoE和多模态上重定向(֒→),每项得分为4,表明需更集成和复杂的系统。AGI以3分的成绩保持领先(↔)。总影响得分为11。

AGI遏制在MoE和多模态中并非主要挑战(△),得分为1。但随着AGI进步,对有效遏制策略的需求增加,得分为5,强调安全和受控AI部署的重要性。总影响得分为7。

八 生成人工智能的新兴研究重点

随着我们很可能接近以 Q* 的出现为标志的新时代的悬崖,推动我们更接近实现可用的 AGI,生成式 AI 的研究格局正在经历一场关键的转变。

A. 新兴研究重点

学术界越来越关注两个关键领域:

• 模型架构中的多模态模型:MoE 和AGI 的集成为多模态模型的研究开辟了新的途径。这些发展正在增强处理和综合多种模式信息的能力,这对于专业和通用人工智能系统都至关重要。

• 新兴趋势中的多模态学习:MoE 处于多模态学习的前沿,将文本、图像和音频等多种数据类型集成到专门任务中。这种趋势直接影响着该领域的增强。

此外,对人工智能研究的资金趋势和投资模式的分析可能表明教育部正在向多模式模式等领域发生重大转变。这一趋势的特点是资本流入涉及复杂数据处理和自主系统的领域不断增加,正在塑造未来研究重点的方向。它强调了人们对生成人工智能潜力的兴趣和投资日益增长,影响着学术和行业主导的举措。

B. 多模态的新兴研究重点

在多模态领域,几个领域被确定为新兴研究重点:

• 模型架构中的MoE:MoE 模型对于处理多模式环境中的不同数据类型变得越来越重要。

• 培训技术中的迁移学习:迁移学习正在成为一个关键的研究方向,特别是对于不同模式之间的学习。

• 应用领域中的对话式人工智能和创意人工智能:对话式人工智能和创意人工智能都在多模式环境中扩展,涵盖视觉、听觉和其他感官数据集成。

• 高级学习中的自监督学习:自监督学习的新研究方向正在出现,重点关注各种数据类型的自主集成。

此外,生成式人工智能的兴起,特别是在多模式背景下,可以显着影响教育课程和技能发展。人们越来越需要更新学术课程,以纳入全面的人工智能素养,并重点关注多模式人工智能技术。教育的这种演变旨在帮助未来的专业人士做好准备,有效地参与和利用人工智能的进步,为他们提供必要的技能来驾驭人工智能的复杂性和创新。

C. AGI 中的新兴研究重点

AGI 领域的多个领域的研究重点正在激增:

• 模型架构中的多模态模型:与 MoE 类似,多模态模型在 AGI 中至关重要,可以实现更深入、更细致的理解。

• 训练技术中的强化学习:强化学习作为AGI 的一个关键领域而兴起,其重点是开发从环境中学习的自主系统。

• 应用领域:AGI 正在扩展自然语言理解和生成、对话式人工智能和创意人工智能的界限,重点关注类人理解和创造力。

• 合规性和道德考虑中的偏见缓解:偏见缓解的新方向侧重于采用综合方法来解决AGI 中不同领域的偏见。

• 高级学习中的元学习:AGI 对类人适应性的追求正在引发元学习方面的新颖研究。

• 新兴趋势:随着AGI 的进步,多模式学习、交互式和协作式AI 以及AGI 遏制策略正在成为重要的研究领域。

与 AGI 的这些发展相一致,人工智能研究资金和投资模式的显着趋势显而易见。人们非常倾向于支持通用人工智能的项目和研究,特别是在自然语言理解和生成以及自治系统等领域。这种资助趋势不仅反映了人们对通用人工智能功能日益浓厚的兴趣,而且还指导了未来研究的轨迹,塑造了学术探索和行业驱动的项目。

九 生成人工智能技术的实际意义和局限性

生成式人工智能技术,包括 MoE、多模态和 AGI,提出了独特的计算挑战。本节探讨这些高级人工智能模型固有的处理能力要求、内存使用和可扩展性问题。

A. 生成式人工智能技术的计算复杂性和实际应用

1)计算复杂性:生成式人工智能技术,包括 MoE、多模态和 AGI,提出了独特的计算挑战。本节探讨这些高级人工智能模型固有的处理能力要求、内存使用和可扩展性问题。

• 处理能力要求:先进的生成式人工智能模型,包括MoE架构和AGI系统,需要强大的处理能力[321]。对 GPU 和 TPU 的需求日益凸显,特别是在处理多模式人工智能应用中典型的复杂计算和大型数据集时。

• AI 建模中的内存使用:训练和部署大规模 AI 模型(尤其是在 GPU 上执行的多模式和 AGI 系统中)的一个关键挑战在于大量的 GPU 和 VRAM 需求。与计算机 RAM 不同,VRAM 通常无法在许多平台上轻松扩展,从而造成很大的限制。因此,制定 GPU 和 VRAM 优化以及高效模型扩展策略对于这些人工智能技术的实际部署至关重要。

• AI 部署的可扩展性和效率:解决生成型 AI 中的可扩展性挑战,尤其是在 MoE 和 AGI 环境中,涉及优化负载管理和并行处理技术。这对于它们在医疗保健、金融和教育等领域的实际应用至关重要。

2)生成式人工智能技术的现实应用示例:生成式人工智能模型在现实场景中的应用展示了其在各个领域的变革潜力和挑战。

• 医疗保健:在医疗保健领域,生成式人工智能促进了诊断成像和个性化医疗的进步,但也引起了对数据隐私和滥用敏感健康信息的可能性的严重担忧[322]。

• 金融:在金融领域使用人工智能进行欺诈检测和算法交易强调了其效率和准确性,但同时也引起了道德问题,特别是在可能缺乏透明度和问责制的自动化决策过程中[323]。

• 教育:生成式人工智能在创造个性化学习体验方面的作用在教育可及性和定制指导方面提供了巨大的好处。然而,它对公平获取技术、人工智能生成内容 (AIGC) 的潜在偏见带来了挑战,并可能减少对人类教育工作者的需求。此外,人们越来越担心反对使用 AIGC 的教育工作者,担心它可能会破坏传统的教学方法和教育工作者的作用。

B. 生成型人工智能技术的商业可行性和行业解决方案

  1. 市场准备情况:评估生成式人工智能技术的市场准备情况涉及分析成本、可访问性、部署挑战和用户采用趋势。

• 成本分析:部署生成式人工智能的财务方面,包括教育部、多模式和通用人工智能,对于市场采用至关重要。

• 可访问性和部署:将这些技术集成到现有系统中以及所需的技术专业知识是影响其采用的关键因素。

• 用户采用趋势:了解当前的采用模式可以深入了解市场接受度以及用户信任和感知利益的作用。

2)现有行业解决方案:生成式人工智能正在通过提供创新解决方案和改变市场动态来重塑各个行业。

• 行业部署:生成式人工智能的多样化应用,从数字内容创建到流程简化,也引发了关于原创性和知识产权的问题。

• 对市场动态的影响:人工智能解决方案对传统行业结构的影响以及新颖商业模式的引入是重要的考虑因素。

• 挑战和限制:解决可扩展性、数据管理复杂性、隐私问题和道德影响等限制对于健全的治理框架至关重要。

1)技术限制:识别和解决生成人工智能模型的技术限制对于其先进性和可靠性至关重要。

• 语境理解:增强人工智能理解和解释语境的能力,特别是在自然语言处理和图像识别方面,是需要改进的关键领域。

• 处理模糊数据:开发更好的算法来处理模糊或不完整的数据集对于决策的准确性和可靠性至关重要。

• 驾驭人类判断:尽管生成式人工智能在解释政策和程序方面非常准确,但其在取代人类判断方面的影响有限。在法律和政治背景下尤其如此,决策者可能有选择地使用 AIGC,从而导致有偏见的结果。因此,应该现实地评估生成式人工智能在这种情况下的有效性。

2)增强生成式人工智能实用性的未来研究方向:生成式人工智能的未来研究应侧重于解决当前的局限性并扩展其实际应用。

• 提高语境理解:研究应致力于开发具有更好语境感知能力的模型,特别是在复杂的自然语言和图像处理任务中。

• 模糊数据的稳健处理:研究有效处理模糊数据的技术对于提高人工智能模型的决策能力至关重要。

• AIGC 在法律和政治领域的伦理整合:未来的研究应重点关注人工智能生成内容在法律和政治决策过程中的伦理整合,其中涉及开发利用 AIGC 发挥支持作用的框架,确保其增强人类判断力 并有助于透明度和公平性[324]。重要的是,研究人员应该考虑人工智能固有的偏见和局限性[324],以及这些领域中人类可能犯的错误、道德的复杂性以及可能的腐败。

十 生成人工智能对跨学科预印本的影响

图 7:每年向 arXiv.org 上不同类别提交的预印本提交量

大量的预印本使得选择和审查研究的任务变得异常艰巨。学术界正处于十字路口,需要就如何应对这一正在出现的“混乱”进行紧急而深思熟虑的讨论——如果不加以解决,这种情况就有可能失控。在这种背景下,同行评审的作用变得越来越重要,因为它是质量和有效性的关键检查点,确保人工智能研究的快速产出得到严格研究,以确保科学准确性和相关性。然而,目前传统同行评审的做法似乎不可持续,主要是因为它无法跟上人工智能主题研究和生成人工智能加速的研究提交的指数增长的步伐,以及新兴领域日益专业化的性质。

在这个快速发展的格局中,设想传统同行评审系统和蓬勃发展的预印本生态系统之间的融合,这可能涉及创建混合模型(图 8),其中预印本经过初步的基于社区的评审,利用集体专业知识和快速反馈 学术界的,类似于产品评论网站和 Twitter [330]。这种方法可以提供初始验证层,为有限数量的同行评审员可能忽视的问题提供额外的见解。主编 (EIC) 可以考虑社区评审中对文章的主要批评和建议,确保评估更加彻底和多样化。随后,更正式的同行评审流程可以完善和认可这些预印本,以确保学术严谨性和质量保证。这种混合模型需要强大的技术支持,可能利用人工智能和机器学习工具来协助初步筛选和识别合适的审稿人。目的是建立从快速传播到经过验证的出版的无缝连续体,确保预印本的速度和同行评审研究的可信度。必须采取平衡的方法来利用预印本的好处(例如研究结果的快速传播和开放获取),同时减轻其缺点。新基础设施和规范的发展可能有助于引导学术界走向可持续的模式,以维护生成人工智能时代科学研究的完整性和可信度。

图 8:传统同行评审与预印本生态系统之间可能的趋同

十一 总结

本文探索人工智能的发展趋势,特别关注了像是Q*这样的推测进步和如何迈向通用人工智能。通过教育部、多模式学习和通用人工智能等创新方式来驱动关键的转变。这些都预示着人工智能在未来会有很大的进步,能够更好地推理、理解上下文和创造性地解决问题。

虽然人工智能已经取得了很多进步,但还有很多问题需要解决。比如,如何确保先进的人工智能系统在道德上与我们人类的价值观和社会规范一致,这是一个很大的挑战。另外,AGI系统在不同环境中的安全性和稳定性也是一个重要的研究方向。

本文还强调了未来人工智能跨学科研究的重要性,要把伦理、社会学和技术整合起来。这样,我们才能缩小技术进步和社会需求之间的差距,确保人工智能的发展符合人类的需求。

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

  • 24
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值