一、概述
目前没有标准的Prompt类型的定义,AI知行汇收集整理了8种分类,并给出一些例子说明。了解这些分类可以在写Prompt的时候根据场景给出合适的提示词。得到更好的输出。
-
Zero-Shot Learning
-
Few-Shot Learning
-
Completion Prompt
-
Question-Answering Prompts
-
Prompt Chaining
-
Chain-of-Thought Prompting
-
RAG
-
ReAct
二、八种类型
1 Zero-Shot Learning
零样本学习 (Zero-Shot Learning):又叫Instruction prompts(指令提示)是最直接的一种提示类型。它们直接告诉大型语言模型(LLM)需要做什么,起到命令或指令的作用。指令越清晰、越具体,LLM 就能越好地理解和执行。
-
解释
Prompt: “Explain what a large language model is.”
-
总结
Prompt: “Summarize the following article in one paragraph: ‘The global economy is undergoing significant changes due to advancements in technology and shifts in consumer behavior…’_”
-
代码生成
Prompt: “Write a Python function that calculates the factorial of a given number and includes error handling for invalid inputs.”
-
翻译
Prompt: “Translate this sentence into German.”
2 Few-Shot Learning
少样本学习 (Few-Shot Learning):这指的是提供少量示例(通常 1-5 个),以帮助 AI 理解你期望的响应模式或风格。
例如:
3 Completion Prompt
补全提示(Completion Prompts)可以应用于广泛的任务,包括撰写各种类型的创意内容、翻译语言、总结文本,甚至生成代码。
例如:下午写一个开头,AI会自动补充完整一个段落。
4 Question-Answering Prompts
Question-Answering Prompts 是一种专注于问答任务的提示类型,根据用户的问题提供准确和相关的答案。这种类型的 Prompt 适用于获取知识、解决问题或进行交互式问答场景。支持上下文持续问答,可以基于已有的问题深入探讨。
Prompt:
“Who is the author of Pride and Prejudice?”
Prompt:
“What is the capital of France?”
5 Prompt Chaining
提示词链(Prompt Chaining):将复杂任务分解为多个小提示词,然后将它们的输出串联起来,形成最终的响应,分步骤生成的好处是增强可控性。
例如:
任务:生成一篇简短的旅游推荐文章,其中包括推荐的地点及其亮点。
可以分为2步:
**步骤 1:生成推荐地点
步骤 2:结合信息生成文章
6 Chain-of-Thought Prompting
链式思维提示 (Chain-of-Thought Prompting):在这里,你要求 AI 按步骤详细说明其思考过程(step-by-step)。这对于推理任务特别有用。
链式思维提示这种方式关注 LLM 的内部逻辑,比如思维链(Chain of Thought)、多模态思维链、思维树(Tree of Thought)。同时还关注在这个过程中的自洽(Self-consistent)和自我反思(Reflexion)。
7 RAG
前面六种都是大模型本身就能完成的提示词工程类型,如果需要补充自有的知识库,就需要通过一些框架来完成。RAG(Retrieval-Augmented Generation) 是一种结合信息检索和生成模型的框架,提高大语言模型(LLM)在处理需要外部知识的任务时的准确性和效率。RAG 模型通过动态地从外部知识库中检索相关信息,并将这些信息与语言模型结合,生成上下文相关的答案。
RAG 的应用场景:
-
问答系统:例如,回答与特定领域相关的问题(如法律、医学)。
-
个性化推荐:结合用户历史记录和检索结果生成推荐内容。
-
文档摘要:从长文档中检索关键信息,并生成简洁的摘要。
-
技术支持和聊天机器人:动态访问知识库,提供实时准确的支持信息。
RAG因为扩展的LLM的能力,一定程度上解决了LLM容易出现的幻觉问题,受到广泛关注和使用。 也因为比较复杂,就出现了如Langchain、MCP等框架,试图解决各个模块对接的标准问题。
8 ReAct
ReAct(Reasoning + Acting) 是一种将推理(Reasoning) 和操作(Acting) 结合的框架,用于增强大语言模型(LLM)的推理能力和交互能力。ReAct 的核心思想是通过交替地执行推理步骤和实际操作,使模型能够在解决问题的过程中动态地获取信息、执行任务,并根据反馈调整策略。因为引入了Agent的概念,可以被认为是在试图实现一个AI智能体了。
ReAct 框架的核心特点:
-
规划推理(Reasoning): • 模型通过逐步展开思考过程,详细分析问题的各个方面。 • 提供链式思维(Chain-of-Thought)推理的能力,使模型能够逐步解决复杂问题。
-
操作工具(Acting): • 模型可以根据推理的中间结果,调用外部工具或执行具体操作(如查询数据库、检索信息、调用 API 等)。 • 操作可以为后续推理提供额外的上下文或信息。
-
记忆存储: • 因为模型有输入上下文限制的问题,通过短期记忆和长期记忆,模型记住更早期的对话内容。
-
交替执行: • 推理和操作交替进行,模型会基于操作结果调整推理过程,从而动态地优化任务解决方案。
三、总结
提示词(Prompt)的多样性和灵活性让人工智能模型能够适应各种任务需求,无论是简单的问答、复杂的逻辑推理,还是创意写作和代码生成。从最简单Zero-Shot Learning到复杂的RAG、ReAct等,学习不同类型的提示词,不仅能提升模型的输出质量,也能更高效地实现目标。
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈