前言
在前面的教程中,我们通过 Ollama 实现了私有化部署大模型,并完成了对话与 API 访问的基本功能。然而,此时的大模型还无法访问私有知识库。本文将介绍如何通过 AnythingLLM 与 Ollama 结合,搭建一个具备私有知识库能力的 AI 应用。
AnythingLLM 简介
AnythingLLM 是一款开箱即用的一体化 AI 应用,支持 RAG(检索增强生成)、AI 代理等功能。它无需编写代码或处理复杂的基础设施问题,适合快速搭建私有知识库和智能问答系统。
主要特性:
-
多种部署方式:支持云端、本地和自托管部署。
-
多用户协作:支持团队协作,适用于企业知识管理和客户支持。
-
多模型支持:兼容 OpenAI、Anthropic、LocalAI 等主流大模型。
-
多向量数据库支持:支持 Pinecone、Weaviate 等向量数据库。
-
多文件格式处理:支持 PDF、TXT、DOCX 等文件格式。
-
实时网络搜索:结合 LLM 响应缓存与对话标记功能,提供高效的文档管理和智能问答能力。
下载与安装
AnythingLLM 提供了 Mac、Windows 和 Linux 的安装包,用户可以直接从官网下载并安装。
安装完成后,首次启动时会提示配置偏好设置。用户可以根据需求进行设置,后续也可以随时修改。
配置 LLM 提供商
在 AnythingLLM 的设置页面,可以通过 LLM 首选项 修改 LLM 提供商。本文使用本地部署的 Ollama 和 qwen2.5:14b 模型。配置完成后,务必点击 Save changes
按钮保存设置。
❝
注意: 关于 Ollama 的部署与使用,请参考之前的教程。
上传文档
在聊天界面中,用户可以创建多个工作区。每个工作区可以独立管理文档和 LLM 设置,并支持多个会话(Thread),每个会话的上下文也是独立的。
点击上传图标,可以管理当前工作区的知识库。AnythingLLM 支持以下三种方式上传文档:
-
本地文档上传:直接上传本地文件。
-
Web 链接:通过 URL 上传网页内容。
-
数据链接:从 GitHub、GitLab 等平台导入数据。
Documents 界面
在 Documents
界面,用户可以管理已上传的文档,并通过下方的上传按钮或拖拽方式上传新文档。
❝
提示: 如果需要上传整个目录及其子目录中的文档,直接将目录拖拽到上传按钮上即可。
Data Connectors
Data Connectors 功能支持从 GitHub、GitLab 仓库或网站爬取数据。用户只需输入仓库地址和 Token,即可导入指定目录或网页内容。
上传示例
以下是一个从 GitHub 仓库导入数据的示例:
-
输入仓库地址和 Token。
-
通用 File Ignores 配置导入的目录。
-
点击导入按钮,等待数据加载完成。
导入完成后,用户可以在 Documents
界面选中文档,并点击 Move to Workspace
将其添加到工作区。
添加到工作区后,点击 Save and Embed
,将文档内容转换为向量检索所需的嵌入数据结构。此过程可能会消耗较多 CPU 资源,具体时间取决于文档数量。
查询知识库
将文档添加到工作区后,用户可以通过设置聊天模式调整大模型的回复方式:
-
聊天模式:结合 LLM 的通用知识和上传文档的上下文生成答案。
-
查询模式:仅基于上传文档的上下文生成答案。
在聊天窗口中,用户可以直接提问。大模型会基于文档内容生成答案,并标注答案来源。
使用 Agent 能力
AnythingLLM 支持 AI 代理功能,用户可以通过 Agent 完成特定任务。除了官方提供的默认 Agent(如 Scrape websites
),还支持通过社区添加自定义 Agent。
配置 Agent
在设置页面的 代理技能 中,用户可以管理 Agent。默认开启的 Agent 无法关闭,其他 Agent 需要手动启用。
使用示例
以下是一个使用 Scrape websites
Agent 的示例:
- 在聊天界面输入
@agent
+ 提示词,启动 Agent 会话。
- Agent 会通过 Web Scraping 工具爬取指定页面并返回结果。
❝
注意: 启动 Agent 会话后,无需每次输入
@agent
。退出 Agent 会话可通过切换聊天页面或输入/exit
命令。
当会话提示 Agent session complete
时,表示已退出 Agent 会话。
结语
通过 AnythingLLM 和 Ollama 的结合,我们成功搭建了一个具备私有知识库能力的 AI 应用。私有知识库不仅可以让 AI 回答通用问题,还能基于私有文档(如企业内部资料、图书等)生成更精准的答案。
❝
注意: 随着知识库中文档数量的增加,回答的准确性可能会受到影响。建议将文档分散到多个工作区,以提高检索效率。
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~