奥特曼简单一句话,让AI创业公司瑟瑟发抖:
“套壳”OpenAI,注定消亡!
这是在最新YC校友分享会上,OpenAI CEO奥特曼发表的演讲观点。为此他还特意补充道:尤其别花太多精力在UI界面上。一时间引发共鸣无数。不少业内人士表示:
现实是,我就在目睹很多这样的事情发生。
除了这句话以外,奥特曼这段演讲中可谓金句频出,个中不少“干货细节”,也被大伙儿纷纷摘录转发——包括GPT-5、6的进展,关于AGI未来趋势的看法,以及亲身创业的种种。比如,“AI女友”只是个美丽的陷阱,千万不要轻易尝试。
特意取个ChatGPT这样很像机器的名字,人类就不会对它产生感情。🤣
听完演讲后的网友,甚至将之形容为“金子一般的收获”。
所以奥特曼究竟在这场演讲中分享了啥?一起来看看。
“简单学我者死”
在YC Alumni Reunion 2023上,奥特曼是有一些创业建议在身上的。在一些热心网友的总结中,大致可以分为三点:
- 简单包装OpenAI的公司活不长久。
- 看好AI医学顾问、AI个性化一对一辅导等方向。
- 盲目筹资是非常不明智的。
第一点对于简单包装,奥特曼举例比如有公司正在解决GPT模型的小缺陷,尤其只在界面上做文章的。一来,OpenAI已经在解决大部分工作了;二来,这些仅在成本和速度上与OpenAI一较高下的公司,竞争优势并不会长久且持续。企业必须在提供真正独特的价值。有网友联想到,前段时间红杉资本提出生成式AI进入到第二阶段——炒作和快速展示正在被真正有价值和完整的产品体验所取代。种种观点,其实不谋而合。不少业内人士都表示了肯定:
不要把自己放在菜板上,被OpenAI的下一个版本杀死。
(嗯,有官方逼死同人内味了)
但也有人提出了不同的观点:这种说法已经太多了,对我来说似乎很愚蠢。它透露了几点信息:垄断是好事;先发优势将会获胜……但竞争会促进进步,ChatGPT也确实有很多缺点可以改进。既然如此,那有哪些方向是值得一做的呢?第二点,奥特曼看好AI在医学、教育上的赋能——AI医学顾问以及AI个性化一对一辅导。这两者社会价值都十分巨大。比如在教育场景,OpenAI自己也十分积极。消息称,OpenAI正在筹建OpenAI学院,预计2023年底启动。它有可能是人人可访问的免费在线教学系统,老师能与GPT-5来互动,在课程期间接收反馈和指导。在此之前,OpenAI也在GPT-4客户案例中展现了两个教育场景。GPT-4化身AI学习助手,既可以作为学生的虚拟导师,又可以作为教师的课件助手。第三点,没有计划的盲目筹资非常不明智。别以为有钱了就万事大吉。总结的网友还顺带说了句:奥特曼能做,不代表你也能做。
GPT-5究竟长啥样?
另一个热度极高的话题,就是OpenAI的下一代大模型——GPT-5和GPT-6了。对此,奥特曼在演讲中也剧透了下一代大模型的长相,但不多:
GPT-5和GPT-6将具备多模态输出能力,相比现有的GPT可靠性更高、个性化定制体验更好。
具体的多模态能力,有网友预测是能更好地完成像grounding这种NLP和视觉场景对齐的任务,如图像标注、视觉问答等。结合此前奥特曼还暗示过GPT-5会具备语音识别、合成和情绪检测等新功能来看,GPT-5应该会具备“图文听说”等各种模态对齐的能力。借着GPT-5和GPT-6的话题,奥特曼还给大模型“布了个道”:
现在,大模型领域的“摩尔定律”(Scaling Laws)已经开始发挥作用。大模型训练成本正变得更低、调用GPT接口的价格将变得更便宜。
Scaling Laws是OpenAI在2020年提出的一条定律,简单来说就是随着模型大小、数据集大小和用于训练的计算浮点数的增加,模型的性能会提高。奥特曼认为,随着未来能源和计算成本快速下降,更强大的AI能力将会出现,“此前不敢想象的很多东西会被做出来”。但即便大模型前景如此光明,奥特曼表示“距离AGI之路都还有很远”——无论是GPT-5还是GPT-6,都还远远不及AGI。甚至光是“像人”这一标准,现阶段就还没AI Chatbot能做到:
即使背后用上了最前沿的AI技术,也没让我感觉到在和一个“人”聊天。
奥特曼认为,真正的AGI将能够掌握“自行推理”,即随着时间推移发展出新知识。像是能够根据物理学已有知识,写论文、做实验的AI,才能够得上AGI的门槛。不过无论如何,都应该谨慎对待AI的输出结果:
人们会原谅人犯错误,但不会原谅计算机,二者的标准是不一样的。
对于AGI时刻的来临,奥特曼也给出了一个想象:
到那个时候,人们可能会经历一定程度的自我认同危机,但不会太糟糕和混乱。我们经历过很多次这样的时刻,技术终将变得无处不在。
“一个本科生坚持的结果”
最后,关于ChatGPT本身,奥特曼还cue到了两个小小的“花絮”。其一,ChatGPT之所以叫ChatGPT,没有像人名的昵称,就是因为奥特曼不想往 “AI女友”产品的方向上走。其二,ChatGPT并非OpenAI最初就“倾力投入”的一个项目。由始至终,OpenAI甚至只有一个本科生坚持做大模型方向的研究,其他人或多或少都转向过机器人、或是游戏AI等其他领域“发发论文”。这个只搞大模型的本科生,就是Alec Radford,如今在谷歌学术上的论文引用次数已经达到9.6w+。
2016年,Alec Radford于富兰克林·欧林工程学院(Franklin W. Olin College of Engineering)取得学士学位,随后加入OpenAI,一干就是7年。正是他所坚持的大语言模型路线,改变了OpenAI公司、乃至整个AI领域的发展方向。对此,奥特曼半调侃半认真地表示:
招聘时,记得关注那些“看起来不会加入公司”的人。OpenAI一开始并未确定大模型这一研究方向,但我们仍然招了AI研究员,并在取得突破后让更多人加入其中,最终成就了ChatGPT。
结合OpenAI招聘人才“不限行业”的规定,打破惯例看来已经成为这家公司获得灵感和活力的新动力了。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓
