langchain + MCP的最简单打开方式~

嘿,大家好!这里是一个专注于前沿AI和智能体的频道~

提到 MCP ,大家应该都知道是个什么东西了。 

那日常做一些简单coding,怎么用起来MCP server、MCP client呢,今天用langchain做个小示例,希望能帮助到有需要的家人们~

安装依赖

先安装一下package: pip install langchain-mcp-adapters

启动mcp_server

先建一个 mcp_server.py 脚本,实现加法和乘法函数。

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("Math")

@mcp.tool()
def add(a: int, b: int) -> int:
    """2数相加"""
    return a + b

@mcp.tool()
def multiply(a: int, b: int) -> int:
    """2数相乘"""
    return a * b

if __name__ == "__main__":
    mcp.run(transport="stdio")

启动python mcp_server.py, 这个启动没有任何的日志,不报错,那就是成功了。

启动client

创建一个client.py脚本,调用刚刚启动的server服务。

简单起见,这里用openai的模型, 可以先配置环境变量API-KEY,export OPENAI_API_KEY=<your_api_key>,大家也可以按需替换其他的模型。

from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from langchain_mcp_adapters.tools import load_mcp_tools
from langgraph.prebuilt import create_react_agent
from langchain_openai import ChatOpenAI
import asyncio

model = ChatOpenAI(model="gpt-4o")

server_params = StdioServerParameters(
    command="python",
    args=["mcp_server.py"],
)

async def run_agent():
    async with stdio_client(server_params) as (read, write):
        async with ClientSession(read, write) as session:
            await session.initialize()

            tools = await load_mcp_tools(session)
            # 创建并执行agent
            agent = create_react_agent(model, tools)
            agent_response = await agent.ainvoke({"messages": "(3 + 5) * 12 等于?"})
            return agent_response

# Run the async function
if __name__ == "__main__":
    result = asyncio.run(run_agent())
    print(result)

执行一下:  python client.py

然后就可以看到日志了:

{'messages': 
[HumanMessage(content="(3 + 5) * 12 等于?", 
additional_kwargs={}, response_metadata={}, 
id='87a8b6b6-9add-4da7-aea5-1b197c0fc0f5'), 
AIMessage(content='', 
additional_kwargs={'tool_calls': [{'id': 'call_1eyRzR7WpKzhMXG4ZFQAJtUD', 

'function': 
{'arguments': '{"a": 3, "b": 5}', 'name': 'add'}, 
'type': 'function'}, 
{'id': 'call_q82CX807NC3T6nHMrhoHT46E', 

'function': 
{'arguments': '{"a": 8, "b": 12}', 'name': 'multiply'}, 
'type': 'function'}], 

'refusal': None}, 
response_metadata={'token_usage': 
{'completion_tokens': 51, 
'prompt_tokens': 77, 
'total_tokens': 128, 

'completion_tokens_details': 
{'accepted_prediction_tokens': 0, 
'audio_tokens': 0, 
'reasoning_tokens': 0, 
'rejected_prediction_tokens': 0}, 

'prompt_tokens_details': 
{'audio_tokens': 0, 
'cached_tokens': 0}}, 

'model_name': 'gpt-4o-2024-08-06', 
'system_fingerprint': 'fp_eb9dce56a8', 
'finish_reason': 'tool_calls', 
'logprobs': None}, 

id='run-13c01640-f92b-48b7-9340-c2ad983eb1c8-0', 
tool_calls=[{'name': 'add', 'args': {'a': 3, 'b': 5}, 
'id': 'call_1eyRzR7WpKzhMXG4ZFQAJtUD', 
'type': 'tool_call'}, {'name': 'multiply', 
'args': {'a': 8, 'b': 12}, 
'id': 'call_q82CX807NC3T6nHMrhoHT46E', 
'type': 'tool_call'}], 

usage_metadata={'input_tokens': 77, 
'output_tokens': 51, 
'total_tokens': 128, 
'input_token_details': {'audio': 0, 
'cache_read': 0}, 

'output_token_details': {'audio': 0, 
'reasoning': 0}}), 
ToolMessage(content='8', 
name='add', 
id='f8e0aba5-7a62-44c6-92a3-5fe3b07c9bd5', 
tool_call_id='call_1eyRzR7WpKzhMXG4ZFQAJtUD'), 

ToolMessage(content='96', 
name='multiply', 
id='66b9bbd9-b99a-402f-b26c-df83f5a69fa3', 
tool_call_id='call_q82CX807NC3T6nHMrhoHT46E'), 
AIMessage(content=' \\((3 + 5) * 12\\) 的结果是 96。', 

additional_kwargs={'refusal': None}, 

response_metadata={'token_usage': {'completion_tokens': 22,
'prompt_tokens': 143,
'total_tokens': 165, 
'completion_tokens_details': {'accepted_prediction_tokens': 0, 
'audio_tokens': 0, 
'reasoning_tokens': 0, 
'rejected_prediction_tokens': 0}, 

'prompt_tokens_details': {'audio_tokens': 0, 
'cached_tokens': 0}}, 

'model_name': 'gpt-4o-2024-08-06', 
'system_fingerprint': 'fp_eb9dce56a8', 
'finish_reason': 'stop', 
'logprobs': None}, 

id='run-6c00a336-7d52-4917-9186-b282a5984b10-0', 
usage_metadata={'input_tokens': 143, 
'output_tokens': 22, 
'total_tokens': 165, 
'input_token_details': {'audio': 0, 'cache_read': 0}, 

'output_token_details': {'audio': 0, 
'reasoning': 0}})]}

MCP 采用server-clent架构,其中 MCP 主机(AI 应用)与 MCP 服务器(数据/工具提供商)进行通信,整体用起来也很简单。

好了,这就是我今天想分享的内容。如果你对构建AI智能体感兴趣,别忘了点赞、关注噢~

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值