商用 AI Agent 的开发框架如何选择?

近期很多朋友来问我:

  • 商用 AI Agent,如何选择开发框架?

  • Manus、Coze 空间等产品相继推出,目前学习 Coze、Dify 等的 AI Agent 平台还有用吗?

带着这个问题,我来为大家解读一下 LangChain 刚出的一篇文章《如何思考 AI Agent 框架》。

我们可以从中找到答案。

这篇文章分为四部分:

  • 第一部分:什么是 AI Agent(智能体)

  • 第二部分:构建 AI Agent 的难点

  • 第三部分:如何评价一个框架的好坏

  • 第四部分:Coze 开发工作流是否会被 Agent 开发平台取代

文章有点长,可以先收藏,慢慢观看。

如果看完对你有帮助,希望一键三连,谢谢。

文末可领取 Agent 框架比较分析、Deepseek 学习 PPT 以及各大模型厂商的最佳 AI Agent 开发实践指南。

什么是 AI Agent?

在当前的大模型厂商的官方,貌似都没有对 AI Agent 做过一个精准的定义。

我们看一下 OpenAI 的定义:

Agents 是能代替你独立完成任务的系统。

这个其实是定义了一种未来,通用 AI Agent,目前当下还没有达到这个程度。

相比之下,Anthropic 的定义就比较接地气:

“Agent”可以用几种方式来定义。

一些客户将 Agent 定义为完全自主的系统,它们在较长时间内独立运行,使用各种工具来完成复杂的任务。

另一些人则用这个词来描述遵循预定义工作流程的实现。

在 Anthropic,我们将这些都归类为 Agentic 系统,但我们在工作流 和 Agent 之间划出了一个重要的架构区别: 

工作流是通过预定义路径编排 LLM 和工具的系统。 

而 Agent 是由 LLM 动态规划其自身的流程和工具使用,从而控制其完成任务的方式。

Anthropic 的定义更贴合目前的情况,他在定义中提到了,工作流、Agent、Agentic 系统。

接下来,我们分别介绍一下他们三者之间的区别和关系。

Agent

Agent 指的是 LLMs(大模型)自主规划控制任务的执行,像 Manus、扣子空间等。

图片

 

让我用写文章的例子来说明 Agent 的运行特点:

图片

 

1. 你向 Agent 下达任务:"帮我写一篇关于可持续农业的文章" 

2. LLM(大模型)规划写作任务,开始撰写一篇文章初稿,在这个过程中会调用联网搜索等工具。 

3. 初稿完成后,Agent 会针对如下问题进行检查

  • 文章是否符合要求的主题和结构

  • 内容是否逻辑连贯

  • 信息是否准确

  • 是否需要更多数据支持论点

4. 针对检查的结果,Agent 再次调用大模型执行第二次循环。

5. 当 Agent 认为文章满足特定条件时,就会停止循环,输出文章。

    这个过程可能会经历多个循环。比如,Agent 生成的初稿,反馈:"请添加更多关于堆肥技术的内容",然后调整文章,再次进入行动-反馈循环,直到最终达到满意的结果。

    这种方式,LLM(大模型)控制了整个执行过程,自主性强,可预测性弱。

    工作流

    在工作流里,LLM(大模型)的控制较少,每一步执行步骤,都是我们预先定义好的。

    图片

     

    还是写文章的例子,如果用工作流来执行的话,就是提前定义好工作流执行的每个节点,例如:

    图片

     

    1. 你向 Agent 下达任务:"帮我写一篇关于可持续农业的文章" 

    2. 规划文章大纲 

    3. 撰写每一章的内容 

    4. 如果需要联网的话,配置网络搜索工具 

    5. 对每一章内容进行审核

    6. 针对审核意见,改进内容 

    7. 汇总各章内容,形成最终文章

    通过例子,可以看到工作流整个运行节点都是预先配置,LLM 的自主性弱,可预测性强。

    Agentic 系统

    Agentic 系统就是将 Agent 和工作流结合在一起。

    选择工作流还是 Agent?

    在我们实际应用过程中,不要纠结于是用 Agent 还是用工作流,根据实际应用场景找到最简单的解决方案。

    OpenAI 和 Anthropic 都明确指出,在许多情况下,工作流程更加简单、可靠、经济、快速且性能更佳。

    Anthropic 的智能体开发指南中,明确的说过

    在使用 LLMs 构建应用程序时,我们建议找到最简单的解决方案,并在必要时才增加复杂性。

    这可能意味着根本不构建 Agentic 系统。

    Agentic 系统通常会牺牲延迟和成本以换取更好的任务性能,您应该考虑何时这种权衡是合理的。

    当需要更多复杂性时,工作流为定义明确的任务提供了可预测性和一致性,而当需要大规模的灵活性和基于模型的决策时,Agent 则是更好的选择。

    构建 AI Agent 的难点有哪些?

    真正开发过实际应用场景 AI Agent 的人,大多数都会同意构建 Agent 很难。

    或者更准确地说,构建一个原型 Agent 很容易,但构建一个可靠的、运行准确、能够支撑业务运行的 Agent 就困难多了。

    真正的难点在于如何让它运行准确。

    你可以轻松做出一个看起来不错的演示,但能否让它可靠的、准确的、稳定的运行,没有大量调试过程是不可能的。

    几个月前,LangChain 对 Agent 开发者进行过一项调查,问他们:"Agent 投入生产最大困难是什么?".

    排名第一的就是:性能质量,让 Agent 准确、稳定的运行非常困难。

    图片

     

    那造成运行不好的原因,大多数在于 LLM(大模型)。

    而 LLM 为什么会表现不佳?主要有两个原因:

    1. 1. 选择的大模型能力不行

    2. 2. 传递给大模型的上下文错误或不完整

    根据 LangChain 的经验,通常是第二种情况,那么,都是哪些方面原因造成的呢?

    • • 系统消息不完整或太短

    • • 用户输入内容模糊

    • • 没有正确的调用工具

    • • 工具描述不清晰

    • • 没有传入正确的上下文

    • • 工具调用返回的格式不佳

    核心难点

    构建可靠的 Agentic 系统的难点在于,确保 LLM(大模型)在执行的每一步都有正确的上下文。

    任何使你难以精准的控制传递给 LLM 内容的框架,都会降低 Agent 运行的准确度。

    如何评价一个框架的好坏?

    在选择不同框架的时候,或者评估哪个框架好,我们需要尤为关注如下几个方面。

    图片

    短期记忆能力(Short term memory

    如今大多数 Agentic 系统都包含多轮对话组件,一个好的框架满足支撑在生产环境下运行的短期记忆管理。

    这看似简单,但在生产环境中实现可靠的管理并不容易。

    • • 需要处理会话超时

    • • 需要管理存储成本

    • • 需要处理并发请求

    • • 需要实现用户隔离

    长期记忆能力(Long term memory

    虽然仍处于早期阶段,但 LangChain 非常看好 Agentic 系统从经验中学习的能力(例如跨对话记住内容)。

    一个成熟的框架应提供生产环境下的跨多轮会话记忆的存储。

    • • 向量数据库集成

    • • 知识图谱管理

    • • 相关性自动检索

    • • 记忆衰减和优先级机制

    人机协作支持(Human-in-the-loop

    许多 Agentic 系统可以通过人机协作组件得到更进一步的提升。

    什么是人机协作呢?就是在 Agentic 系统过程中,可以从用户获取反馈、批准工具调用或编辑工具调用参数。

    例如:

    • • 金融顾问 Agent 在执行大额交易前请求人工批准

    • • 客服 Agent 在难以处理的问题上请求人工帮助

    • • 内容生成 Agent 让用户编辑和调整其输出

    事后人工干预(Human-on-the-loop

    除了允许用户在 Agentic 系统运行时人类参与决策外,让用户能够在事后检查 Agent 的运行轨迹,甚至回到早期步骤并从那里重新运行也很有用。

    流式输出(Streaming

    大多数 Agentic 系统运行需要一段时间,因此向最终用户提供更新对于提供良好的用户体验至关重要。

    一个好的框架应该它允许输出结果可以实时地、分批传递给用户,而不是等待所有处理完成后一次性返回结果。

    调试与可观测性(Debugging/observability

    构建可靠的 Agentic 系统的难点在于确保向 LLM 传递正确的上下文。

    能够检查代理运行的所有步骤,以及每一步的输入/输出对于构建可靠 Agentic 系统至关重要。

    一个好的 AI 可观测性系统应该让你:

    • • 查看 LLM 接收的提示

    • • 跟踪工具调用及其结果

    • • 每一步的运行时间和成本

    优化能力(Optimization

    与其手动调整提示,有时根据评估数据集自动优化 Agentic 系统可能更容易。

    目前这是一个值得考虑的能力,dspy 是这方面最好的框架。

    工作流是否会被 Agent 取代?

    支持 Agent 取代工作流的观点通常是:虽然现在 Agent 在工具调用的效果还不够好,但随着大模型能力提升,未来你只需要简单的工具调用,Agent 就可以解决所有问题。

    LangChain 认为以下几个观点是可以同时成立的。

    • • Agent 在工具调用的性能将会不断提升

    • • 控制输入到大语言模型的内容仍然至关重要(垃圾输入必然导致垃圾输出)

    • • 对于某些应用场景,简单的 Agent 就已足够

    • • 对于其他应用场景,工作流方案将更简单、更经济、更快速且效果更好

    • • 对于大多数实际应用,生产环境中的代理系统将是工作流和代理的组合体

    这种观点认可了技术进步的可能性,同时也承认不同应用场景有不同的最佳解决方案,而不是简单地认为单一方法适用于所有情况。

    Anthropic 的官方文章说过

    在使用 LLMs 构建应用程序时,我们建议找到最简单的解决方案,并在必要时才增加复杂性。

    这可能意味着根本不需要构建 Agentic 系统。

    Agentic 系统通常会为了执行更复杂的任务而牺牲延迟和成本,您应该考虑何时适用。

    OpenAI 的官方文章也说过

    在投入构建 Agentic 系统之前,请验证你的应用场景是否能明确满足这些标准。

    否则,一个确定性的工作流解决方案可能就足够了。

    大模型能力提升如何影响框架选择?

    随着大模型能力的提升,我们可能会看到以下趋势:

    1. 1. 基础任务:对于基础任务,简单工具调用可能就足够了

    2. 2. 复杂任务:对于复杂、关键业务任务,Agent 和工作流混合方式仍然具有优势

    3. 3. 框架关注点的转变:框架将更少关注基本功能,更多关注高级功能(可观测性、人机协作等)

    4. 4. 垂直专业化增加:我们将看到更多针对特定行业的专业代理框架

    我们应该如何应对这种趋势?

    面对大模型技术的快速发展,我建议采取以下方法:

    1. 1. 从简单开始:对于新项目,从最简单的方法开始(例如工作流)

    2. 2. 逐步增加复杂性:只在需要时添加 Agent 功能

    3. 3. 保持灵活性:选择允许工作流和 Agent 混合的框架

    4. 4. 关注核心价值:不要被炫酷的 AI 技术分散注意力,专注于解决实际业务问题

     一、大模型风口已至:月薪30K+的AI岗正在批量诞生

    2025年大模型应用呈现爆发式增长,根据工信部最新数据:

    国内大模型相关岗位缺口达47万

    初级工程师平均薪资28K(数据来源:BOSS直聘报告)

    70%企业存在"能用模型不会调优"的痛点

    真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

    二、如何学习大模型 AI ?


    🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

    由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

    但是具体到个人,只能说是:

    “最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

    这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

    我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

    我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

    1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
    2️⃣ RAG系统:让大模型精准输出行业知识
    3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

    📦熬了三个大夜整理的《AI进化工具包》送你:
    ✔️ 大厂内部LLM落地手册(含58个真实案例)
    ✔️ 提示词设计模板库(覆盖12大应用场景)
    ✔️ 私藏学习路径图(0基础到项目实战仅需90天)

     

    第一阶段(10天):初阶应用

    该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

    *   大模型 AI 能干什么?
    *   大模型是怎样获得「智能」的?
    *   用好 AI 的核心心法
    *   大模型应用业务架构
    *   大模型应用技术架构
    *   代码示例:向 GPT-3.5 灌入新知识
    *   提示工程的意义和核心思想
    *   Prompt 典型构成
    *   指令调优方法论
    *   思维链和思维树
    *   Prompt 攻击和防范
    *   …

    第二阶段(30天):高阶应用

    该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

    *   为什么要做 RAG
    *   搭建一个简单的 ChatPDF
    *   检索的基础概念
    *   什么是向量表示(Embeddings)
    *   向量数据库与向量检索
    *   基于向量检索的 RAG
    *   搭建 RAG 系统的扩展知识
    *   混合检索与 RAG-Fusion 简介
    *   向量模型本地部署
    *   …

    第三阶段(30天):模型训练

    恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

    到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

    *   为什么要做 RAG
    *   什么是模型
    *   什么是模型训练
    *   求解器 & 损失函数简介
    *   小实验2:手写一个简单的神经网络并训练它
    *   什么是训练/预训练/微调/轻量化微调
    *   Transformer结构简介
    *   轻量化微调
    *   实验数据集的构建
    *   …

    第四阶段(20天):商业闭环

    对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

    *   硬件选型
    *   带你了解全球大模型
    *   使用国产大模型服务
    *   搭建 OpenAI 代理
    *   热身:基于阿里云 PAI 部署 Stable Diffusion
    *   在本地计算机运行大模型
    *   大模型的私有化部署
    *   基于 vLLM 部署大模型
    *   案例:如何优雅地在阿里云私有部署开源大模型
    *   部署一套开源 LLM 项目
    *   内容安全
    *   互联网信息服务算法备案
    *   …

    学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

    如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

    这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值