30+程序员转行大模型,抓住AI风口,非常详细收藏我这一篇就够了!

别再犹豫转不转行,只看理论不行动了!

在这里插入图片描述

作为一位30+北漂男程序员,2个月零基础转行大模型,成功拿下月薪2w+的offer!今天我来分享一下我的亲身经历, 希望能给还在迷茫中的你一些启发!

在这里插入图片描述

转行前的“悲惨”生活

我,一个30+男单身青年,因为家里在一个小城市,大学时一心想报到大城市来,想尝试一下新的生活方式,所以选择了一个普通的二本学院在北京开启了我的大学生活。

因为选择的计算机专业,每天都很忙,也比较难 听学长学姐说我们专业毕业了也是比较累的,但是我当时励志在北京创出一番事业来,所以我觉得其实都还好。

img

后来我留在北京工作生活,成功入职一家软件开发公司,天天在高级写字楼工作,我想很多人都会很高兴在北京获得一份在高级写字楼里的工作,我也不例外,刚毕业时我也非常高兴获得这样一份工作,觉得自己离目标又进一步。

但是我到这里按年算起来,今年已经是第十年了。 这十年来我从一个基层码农到现在的中层,月薪也涨到了2w+,一直以来我都是一个对生活没有什么特殊要求的人。所以一直没有特别在意自己的想法。也没有思考过生活应该怎么过。

img

但是今年我生日时,我突然就意识到,我已经32了,**我好像从来没有自己的生活,**因为程序员每天都很忙,不是在这里测试就是在那里开发,**压力也很大,**每天根本没有时间思考其他的问题。

最基本的下班时间都不能够保证, 加班到十一二点是常态,有时候还是熬夜来找出BUG,**没有一点自己的时间。**朋友约我出去玩吃饭时间都不够,更不要说出去旅游什么的活动,从来都是没有我的,有时候放个小假都要随时随地的带着电脑。

用我们行业的话来说就是**“对于程序员来说,电脑就是子弹,要随时带着准备上战场”。我就在这样的状态下工作了十年**,生活过一团糟,身边的朋友都结婚生子,出国进修,自己创业,各种生活都有,而我却还是一个连自己的时间都没有的单身。而且工资十年来也没有涨很多。

img

所以就在这个32岁的生日之后的一个周五,处理完一周的工作,坐在工位上,**没有社交,**看着外面灯火通明的写字楼和深夜堵车的长龙。

回顾毕业后到现在的点点滴滴,觉得自己好像也没有完成自己的刚毕业时的目标,好像这么多年了还在原地踏步。

我这就是我呆在北京这么久的成果吗?一定不是!我萌生了转行的念头。

一、选择大模型

有了这个念头之后我就开始关注其他的行业岗位,但是我一个30+的没有其他行业的经验的人在第一步就被PASS了。这个时候刚好老家好朋友来找我玩,在跟他的交流中我了解到一个新的行业-大模型

而且随着AI技术的快速发展,尤其是大模型(如GPT系列、LLaMA系列等)的出现,AI行业迎来了新的发展机遇。对于大龄程序员来说,转行到AI大模型领域有几个重要的原因:
• 高薪机遇:AI大模型领域的职位通常薪酬较高,对于寻求职业发展的人来说是个好机会。
• 技术前沿:AI大模型是当前技术发展的热点,参与其中可以保持技术竞争力。
• 市场需求:随着AI技术的广泛应用,对AI大模型的需求不断增加,相关人才供不应求。
• 持续学习:AI领域发展迅速,持续学习可以保持个人的技术竞争力,避免职业停滞。

二、了解大模型

我们先来分析一下大模型这个领域。

实际上,大模型开发也分为两类一类是算法工程师,另一个类是应用工程师。 算法工程师就是研究大模型算法,应用工程师是基于大模型做一些上层应用的开发。当然,后面这类也需要对大模型有或多或少的了解,毕竟,你做普通业务开发还得了解MySQL、Kafka、Redis等底层实现一样。

对**于第一类算法工程师,**要求就高了,不是说你想转行去做,就能做得了的。竞争门槛极其高,起码得是个985/211硕士毕业吧,知名期刊发表过相关论文,有扎实的机器学习、人工智能的理论功底。

如果还要考虑要不要转行去做的,建议你早点放弃吧。因为真的适合去做的,根本就不需要犹豫。

对于第二类应用工程师, 要求相对就低很多了。

像刚刚提到的大模型算法,算是有技术壁垒,而大模型应用就算是有业务壁垒的方向,他跟电商、物流、财务以及其他大型2B系统一样,业务较复杂。对于毕业五年以上的人,如果想要进入这些业务行业,就要比深耕这些行业多年的候选人,更没有优势,毕竟HR在筛选候选人的时候,还是倾向于选择业务匹配的候选人,特别是一些中高端的职位。

如果你现在的方向没有技术壁垒,也没有业务壁垒,那么,有业务壁垒的大模型方向,算是一个不错的选择。但是,不要总是看着别人碗里的饭香,别人的老婆更好,因为这种情况太常见了。今天的热门,也有可能会两三年后的天坑,就像当年的IOS、Android开发一样,没有那么多需求了。谁知道呢?

三、以及岗位和工作内容

大模型相关的岗位通常涉及数据处理、模型训练与调优、系统部署等多个环节。具体工作内容可能包括:

  • 数据预处理:清洗、标注、转换等,确保输入数据的质量。
  • 模型设计与实现:根据任务需求选择或设计合适的网络结构,并完成编码实现。
  • 训练与优化:通过调整超参数、使用正则化技术等方式提高模型性能。
  • 测试与评估:对训练好的模型进行测试,分析结果并作出相应的改进。
  • 部署上线:将最终确定的模型集成到产品中,确保其稳定高效地运行。
四、尝试自学大模型

自学大模型是一个持续学习的过程,建议从基础开始逐步深入。可以从学习线性代数、概率论等数学基础知识做起,然后逐渐过渡到机器学习、深度学习等高级主题。利用开源工具如TensorFlow、PyTorch等实践操作,结合具体的案例来加深理解和记忆。同时,积极参加线上线下的技术交流活动,与其他从业者分享经验,共同进步。

程序员转行至大模型领域需要学习一系列新的技能和知识。以下是一个详细的转行攻略,帮助您从程序员转向大模型领域:

1、了解基础知识:
数学基础:学习线性代数、概率论、统计学和微积分等基本数学知识,这些是大模型领域的基础。
编程语言:学习Python,因为它是最受欢迎的机器学习和数据科学编程语言。

2、学习机器学习理论:
机器学习基础:了解机器学习的基本概念,包括监督学习、非监督学习、强化学习等。
深度学习:深入学习神经网络的基本结构,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。

3、掌握数据处理技能:
数据清洗和预处理:学习如何处理和清洗数据,以便为大模型准备高质量的输入数据。
数据分析和可视化:学习使用工具(如Pandas、NumPy、Matplotlib)进行数据分析和可视化。

4、实践项目经验:
在线课程和项目:参加在线课程,如Coursera、edX、Udacity上的机器学习和深度学习课程,并完成相关项目。

开源贡献:参与开源项目,为现有的机器学习模型或工具贡献代码。

5、学习框架和工具:
TensorFlow和PyTorch:学习这两个最流行的深度学习框架之一,通过实践来掌握它们的使用。

模型部署:了解如何将模型部署到生产环境,学习使用Flask或Django等Web框架。

7、专业领域深入:
自然语言处理(NLP):如果对处理文本数据感兴趣,深入学习NLP,了解词嵌入、序列模型、Transformer模型等。

计算机视觉:如果对图像和视频处理感兴趣,学习计算机视觉的基础知识,如图像识别、目标检测等。

8、建立个人项目:
创建个人作品集:开发一些个人项目,如构建一个简单的推荐系统、情感分析工具或图像识别应用,并将它们添加到您的GitHub仓库中。

9、参与社区和会议:
加入AI社区:参与线上论坛、社交媒体群组和本地Meetup,与其他机器学习爱好者交流。
参加会议和研讨会:参加机器学习和AI相关的会议和研讨会,以了解最新的研究和发展趋势

10、考虑进修教育:
研究生学位:如果您希望更深入地学习,可以考虑攻读计算机科学或数据科学的研究生学位。
专业证书:获得相关的专业证书,如谷歌的机器学习工程师证书。

11、职业规划:
职业转型:在您的简历中强调新的技能和项目经验,开始申请与大模型相关的工作或实习机会。
持续学习:大模型和AI领域不断进步,持续学习新技术和算法对于保持竞争力至关重要。

通过以上步骤,您可以从程序员成功转型为大模型领域的专业人士。记住,这个过程需要时间和努力,但随着您的技能和知识的增长,您将能够在这个新兴且充满机遇的领域中取得成功。
别再犹豫转不转行,只看理论不行动了!

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 黑马程序员 AI 大模型课程概述 黑马程序员提供了全面的AI大模型培训方案,旨在帮助学员掌握构建和应用大型预训练模型的技术能力。该课程涵盖了从基础理论到实际项目实践的内容。 #### 课程目标 - 掌握主流的大规模预训练模型架构及其应用场景。 - 学习如何利用现有的开源工具和技术栈快速搭建基于大模型的应用程序。 - 实践案例分析与动手实验相结合,提升解决复杂问题的能力。 #### 主要内容 1. **基础知识** - 深度学习框架介绍(TensorFlow, PyTorch) - 自然语言处理(NLP) 和计算机视觉(CV) 中的经典任务简介 2. **大模型原理** - 变压器(Transformer) 架构详解[^1] - 预训练方法论及其实现细节 3. **平台与工具链** - 使用星火大模型、文心大模型等行业领先的产品进行实战演练 4. **项目实操** - 完成多个真实世界的项目练习,如文本生成、图像识别等。 5. **前沿探索** - 关注最新的研究进展和技术趋势,鼓励创新思维的发展。 ```python # 示例代码:加载并微调预训练BERT模型用于情感分类 from transformers import BertTokenizer, BertForSequenceClassification import torch tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertForSequenceClassification.from_pretrained('bert-base-chinese') inputs = tokenizer("我喜欢这个产品", return_tensors="pt") labels = torch.tensor([1]).unsqueeze(0) outputs = model(**inputs, labels=labels) loss = outputs.loss logits = outputs.logits ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值