往期,笔者基于LLava的数据对齐训练,搞了一个Reyes多模态大模型,并且看了些多模态大模型,相关开源的多模态大模型如:KimiVL、Internvl、QwenVL等,其视觉编码器的尺寸都比较大,如:MoonViT-SO-400M、InternViT-6B-448px-V2_5 等都非常大,对于特定的垂直场景(或者是端侧落地都不大友好),也许并不需要这么大视觉编码器。如:当时笔者用了一个8B参数的模型及百万表格数据进行训练达到了不错的效果。近期,因此思考一些模型轻量化的方案,寻找一个轻量点的视觉编码器(比如参数量小于100M),下面来看看SAM,供参考。
Segment Anything Model(SAM)是Meta AI发布的一个突破性图像分割模型为计算机视觉领域提供一个通用的、灵活的基座视觉大模型。它受到自然语言处理(NLP)中基础模型(如GPT、BERT)的启发,强调零样本迁移和提示式交互能力。在SA-1B数据集上的训练,该数据集包含超过11百万张图像和11亿个高质量分割掩码,覆盖了从日常场景到专业领域的多样化内容。
SAM借鉴了NLP领域的Prompt策略,通过给图像分割任务提供Prompt提示来完成任意目标的快速分割。Prompt类型可以是「前景/背景点集、粗略的框或遮罩、任意形式的文本或者任何指示图像中需要进行分割」的信息。如图(a)所示,模型的输入是原始的图像和一些prompt,目标是输出"valid"的分割,所谓valid,就是当prompt的指向是模糊时,模型能够输出至少其中一个mask。
模型结构
SAM的模型结构由三个核心组件组成,Image Encoder、Prompt Encoder和Mask Decoder。分别负责图像特征提取、提示编码和掩码生成。图像经过Image Encoder编码,Prompt提示经过Prompt Encoder编码,两部分Embedding再经过一个轻量化的Mask Decoder得到融合后的特征。其中,Encoder部分使用的是已有模型,Decoder部分使用Transformer。 下表为三个组件的总结:
组件名称 | 功能 | 关键特点 |
---|---|---|
Image Encoder | 将输入图像转换为密集特征表示 | 使用MAE预训练的Vision Transformer(ViT-H/16),输入1024x1024x3,输出64x64x256嵌入。 |
Prompt Encoder | 将用户提示(点、框、文本、掩码)编码为嵌入 | 支持稀疏提示(点、框、文本)和密集提示(掩码),使用CLIP处理文本,灵活适应多种输入。 |
Mask Decoder | 结合图像和提示嵌入,生成最终分割掩码 | 轻量级Transformer解码器,通过自注意力与交叉注意力机制预测掩码,实时高效。 |
Image Encoder
本文的目的是为了寻找一个轻量化的视觉编码器,因此下面来详细看下视觉编码器部分。Image Encoder的作用是把图像映射到特征空间,整体过程如下图所示。
正如论文中所讲,本质上这个Encoder可以是任何网络结构,在这里使用的是微调的Detectron的ViT,当然它也可以被改成传统的卷积结构,非常合理。
可以看到,Image Encoder就是一个ViT的结构,由PatchEmbed、Transformer Encoder、Neck Convolution组成。
输入图像经过ViT结构的过程如下:
-
Patch Embedding
输入图像通过一个卷积base,将图像划分为16x16的patches,步长也为16,这样feature map的尺寸就缩小了16倍,同时channel从3映射到768。Patch Embedding示意图如下所示。
将输入的图像转换为序列化的特征向量
Patch Embedding过程在Vision Transformer结构图中对应下图所示。
-
Transformer Encode
feature map通过16个Transformer Block,其中12个Block使用了基于Window Partition(就是把特征图分成14*14的windows做局部的Attention)的注意力机制,以处理局部信息。另外4个Block是全局注意力模块(多头注意力),它们穿插在Window Partition模块之间,以捕捉图像的全局上下文。
循环叠加Transformer Encode
-
Neck Convolution
最后,通过两层卷积(Neck)将通道数降低至256,生成最终的Image Embedding。其结构图如下所示。
SAM构建与轻量化编码器提取
通过下面代码提取一个参数量大小仅为80几M的视觉编码器。
import torch
from functools import partial
from modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer
def build_sam_vit_b(checkpoint=None):
return _build_sam(
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_global_attn_indexes=[2, 5, 8, 11],
checkpoint=checkpoint,
)
sam_model_registry = {
"vit_b": build_sam_vit_b,
}
def _build_sam(
encoder_embed_dim,
encoder_depth,
encoder_num_heads,
encoder_global_attn_indexes,
checkpoint=None,
):
prompt_embed_dim = 256
image_size = 1024
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
sam = Sam(
image_encoder=ImageEncoderViT(
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=image_size,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=vit_patch_size,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
out_chans=prompt_embed_dim,
),
prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
sam.eval()
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f)
sam.load_state_dict(state_dict)
return sam
if __name__ == '__main__':
x = torch.zeros(2, 3, 1024, 1024)
net = build_sam_vit_b(checkpoint='sam_vit_b_01ec64.pth')
image_encoder = net.image_encoder
print(image_encoder)
print(image_encoder(x).shape) # 输出:torch.Size([2, 256, 64, 64])
total_params = sum(p.numel() for p in image_encoder.parameters())
print(f"模型的参数量为: {(total_params/ 1e6):.2f}M") # 模型的参数量为: 89.67M
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】