AI大模型到底能做什么事?——大模型的任务类型以及应用场景

“ 不熟悉大模型技术与业务场景的情况下,怎么构建一款大模型的产品”

现在大模型技术发展的日新月异,但市面上关于大模型的教程基本上都集中在技术实现以及基础使用。

不知道你是否思考过,如果自己想用大模型解决某个领域的问题应该怎么做?‍‍‍

大模型能解决那些问题,该怎么解决这些问题?也可以理解为大模型有哪些任务类型,不同的任务类型能解决那些应用场景的问题?‍

大模型任务与场景的结合

以深度学习为基础的生成式预训练模型(如GPT,BERT等),可以实现广泛的功能,涵盖多个领域和任务。‍‍‍

_自然语言处理_‍

自然语言处理(NLP),分为自然语言理解(NLU)和自然语言生成(NLG)两个重要子任务,技术实现的细节先不考虑,现在来说说自然语言处理的应用场景有哪些:‍‍‍‍‍‍‍‍

文本生成:生成高质量的文本内容,如文章,诗歌,故事等

对话系统:实现智能聊天机器人,与用户进行自然语言对话

机器翻译:自动翻译不同语言的文本

文本摘要:提取和生成文本的简要摘要

情感分析:分析文本中的情感倾向,如正面,负面,中性‍‍‍‍

信息抽取:从文本中提取出有用的信息,如人名,地名,时间等‍‍‍‍

在这里插入图片描述

计算机视觉

图像分类:对图像内容进行分类,如物体识别,场景等

图像生成:生成新图像,如通过GAN生成高逼真的人脸或艺术作品

图像分割:将图像中的不同部分进行分割,识别边界

图像识别:识别和标注图像中的特定对象或特征‍‍

图像修复与去噪:修复损坏的图像或去除图像中的噪点‍

在这里插入图片描述

语音处理

语音识别:将语音转换为文本,如语音转写服务

语音生成:将文本转化为语音,如智能助理的语音输出‍

语音增强:改善音频质量,如去除背景噪音

语音分离:从混合音频中分离出不同的声源‍‍

语音合成:合成多种声音效果,生成拟真度高的语音内容‍‍‍‍‍‍‍

_多模态学习_‍

文本-图像生成:根据文本描述生成对应的图像,或根据图像生成描述文本‍‍

视频理解:对视频内容进行分析,生成描述或进行场景识别‍‍‍‍‍

跨模态检索:通过图像查找相关文本,或通过文本查找相关图像

推荐系统

个性化推荐:根据用户的历史行为推荐商品,电影,音乐等‍‍‍‍

内容推荐:为用户推荐相关文章,视频或社交媒体内容

在这里插入图片描述

数据分析与预测

时间序列预测:对股票价格,气象数据等时间序列进行预测‍‍‍

分类与回归分析:对数据进行分类或回归分析,如客户分类,销售预测‍‍

异常检测:检测数据中的异常行为,如金融欺诈检测‍‍‍‍‍

_强化学习_‍‍‍‍‍‍

游戏AI:训练智能体在游戏中进行自主决策和操作,如AlphaGo‍

自动化决策:在动态环境中进行最优决策,如机器人导航或控制‍‍‍‍‍‍‍‍

代码生成

自动代码补全:在编写代码是自动补全代码段‍‍‍‍‍

代码生成:根据自然语言描述生成代码片段

代码优化与调试:提供代码优化建议并帮助定位和修复代码中的错误

_知识图谱_‍‍

知识提取与构建:从文本中提取实体和关系,构建知识图谱‍‍‍‍

信息检索:基于知识图谱进行复杂的信息检索与问答‍‍‍‍

在这里插入图片描述

_个性化教育_‍

智能辅导:根据学生的学习进行和表现,提供个性化的学习建议和课程内容‍‍‍‍

自动评分:自动对学生的作业或考试进行评分和反馈‍‍

创意与设计

音乐生成:根据特定风格生成音乐片段

艺术创作:创作数字艺术品或设计图案

内容创作:辅助编写剧本,广告文案,营销内容等‍‍‍‍‍

_科学研究_‍‍‍

药物发现:通过分析分子结构预测新药物效果‍‍‍‍

基因分析:分析基因数据,预测疾病风险或遗传特征‍‍

_自动化与控制_‍‍

自动驾驶:用于自动驾驶汽车等环境感知和决策控制

工业自动化:用于优化制造流程和自动化生产线管理‍‍

人工智能文本处理聊天机器人:‍‍‍‍‍‍‍

以上是对大模型部分任务类型和应用场景的枚举,当然大模型的功能远不止于此,大模型是一种强大的技术,但它的应用需要发挥我们天马行空的想象力。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

我们需要从两个角度来理解大模型:第一个是抛开技术寻找应用场景,然后再探索此应用场景下大模型技术方面的可行性;第二个是先熟悉大模型的技术,然后根据技术去探索与某个应用场景的结合。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值