反射模式(Reflection pattern)
以下是该模式的工作流程介绍:
- 用户输入查询:用户通过界面或API向agent发送一个查询请求。
- LLM生成初始输出:大型语言模型(LLM)接收用户的查询,并生成一个初步的响应。
- 用户反馈:用户对初步的响应进行评估并给出反馈。
- LLM反射输出:基于用户的反馈,LLM对初步的响应进行反思,即重新评估和调整其生成的输出。
- 迭代过程:这一过程可能需要多次迭代,直到用户对最终的响应感到满意为止。
- 返回给用户:最终的响应被返回给用户,用户可以通过界面或API接收到结果。
这种模式通常用于提高大型语言模型的交互性和准确性,通过用户反馈不断优化模型的输出。
工具使用模式(Tool use pattern)
以下是该模式的工作流程介绍:
- 用户输入查询:用户通过界面或API向agent发送一个查询请求。
- LLM处理查询:agent内部的大型语言模型(LLM)接收用户的查询,并对其进行处理。在这个过程中,LLM可能需要调用外部工具或API来获取更准确的信息。
- 调用工具和API:如果查询需要额外的信息或数据,LLM会调用存储在vector数据库中的工具和API来获取这些信息。
- 生成响应:LLM根据从工具和API获取的信息生成一个响应,这个响应可能是文本、表格或其他格式的数据。
- 返回给用户:最后,生成的响应被返回给用户,用户可以通过界面或API接收到结果。
这种模式通常用于增强大型语言模型的能力,使其能够访问外部资源以提供更全面和准确的回答。
ReAct模式(ReAct Pattern)
以下是该模式的工作流程介绍:
- 用户(User):用户向系统提出查询(Query),例如需要完成的任务或请求。
- LLM(Reason):接收到用户的查询后,推理型语言模型(LLM - Reason)会分析查询并生成相应的策略或计划。
- 工具(Tools):根据生成的策略或计划,系统调用相应的工具来执行具体的操作。
- 环境(Environment):工具执行操作后,将结果反馈给环境。
- LLM(Generate):环境返回的结果被反馈给生成型语言模型(LLM - Generate),生成型语言模型根据结果生成最终的响应。
- 响应(Response):生成型语言模型生成的响应返回给用户。
这种模式通过结合推理型语言模型和生成型语言模型,实现了从用户查询到最终响应的完整闭环。推理型语言模型负责策略生成,生成型语言模型负责结果解释和响应生成。
规划模式(Planning Pattern)
以下是该模式的工作流程介绍:
- 用户(User):用户向系统提出查询(Query),例如需要完成的任务或请求。
- 计划器(Planner):接收到用户的查询后,计划器会分析并生成一系列任务(Generated tasks)。这些任务可能是具体的执行步骤或子任务。
- 生成的任务:计划器生成的任务会被传递给执行者(ReAct Agent)。
- 执行者(ReAct Agent):执行者根据生成的任务执行单个任务,并将结果返回给计划器。
- 结果反馈:执行者执行完一个任务后,会将结果反馈给计划器。如果所有任务都已完成,则计划器会确认任务完成(Finished?)。
- 响应(Response):计划器根据任务完成情况和结果,生成最终的响应(Response),返回给用户。
这个模式确保了任务的有序执行和结果的及时反馈,从而实现用户需求的有效处理。
多智能体模式(Multi-agent pattern)
以下是该模式的工作流程介绍:
- 用户(User):用户向系统提出查询(Query),例如需要完成的任务或请求。
- 项目经理代理(PM agent):接收到用户的查询后,项目经理代理(PM agent)会分析并分配任务给其他代理。
- DevOps代理(DevOps agent):项目经理代理将任务分配给DevOps代理(DevOps agent)。
- 技术负责人代理(Tech lead agent):DevOps代理将任务进一步分配给技术负责人代理(Tech lead agent)。
- 软件开发工程师代理(SDE agent):技术负责人代理将任务分配给软件开发工程师代理(SDE agent)。
- 执行任务:每个代理根据分配的任务执行相应的操作,并将结果反馈给上一级代理。
- 结果反馈:最终,所有代理完成任务后,将结果反馈给项目经理代理。
- 综合响应:项目经理代理综合所有代理的结果,生成最终的响应(Response),返回给用户。
这种模式通过多个代理协同工作,可以更高效地处理复杂任务,确保任务的有序执行和结果的及时反馈。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~