动画讲解:揭秘Transformer模型的工作原理

一、GPT的核心是Transformer

GPT:GPT(Generative Pre-trained Transformer)是一种基于单向Transformer解码器的预训练语言模型,它通过在大规模语料库上的无监督学习来捕捉语言的统计规律,从而具备强大的文本生成能力。

图片

GPT

在GPT(Generative Pre-trained Transformer)模型中,字母G、P、T各自有其特定的含义:

  • G (Generative):

    **“Generative”意味着这个模型是生成式的。**与判别式模型不同,生成式模型试图捕捉数据的分布,并能够生成新的、看似真实的数据样本。

  • P (Pre-trained):

    “Pre-trained”表示GPT模型在大量的无监督文本数据上进行了预训练,使模型学习到文本中的语言结构和语义信息。

  • T (Transformer):

    **“Transformer”是GPT模型的核心架构。**Transformer是一种基于自注意力机制的神经网络架构,包括编码器和解码器两部分。

图片

GPT的核心是Transformer

Transformer模型在多模态数据处理中同样扮演着重要角色*******,其能够高效、准确地处理包含不同类型(如图像、文本、音频、视频等)的多模态数据。*******

图片

Transformer的多模态

二、Transformer的工作原理

Transformer工作原理四部曲 Embedding(向量化)、Attention(注意力机制)、MLPs(多层感知机)和Unembedding(模型输出)。

图片

Embedding -> Attention -> MLPs -> Unembedding

阶段一:Embedding(向量化)

“Embedding”在字面上的翻译是“嵌入”, 但在机器学习和自然语言处理的上下文中,我们更倾向于将其理解为 一种“向量化”或“向量表示”的技术。

(1)Tokenization(词元化):

  • 对于文本数据: 在自然语言处理(NLP)中,将输入的文本内容(如句子、段落或整个文档)拆分成更小的片段或元素,这些片段通常被称为词元(tokens)。
  • 对于非文本数据(如音频、图像或视频): 在音频处理中,音频信号可以被分割成帧(frames)作为音频词元;在图像处理中,图像可以被分割成图像块(patches)作为图像词元;在视频处理中, 视频可以被分割成视频块(patches)作为视频词元。

图片

Tokenization

(2)Embedding(向量化):

  • Tokens转换为向量:Embedding层负责将输入的Tokens转换为向量,将文本中的Tokens(如单词或字符)映射为固定大小的实数向量来捕捉这些Tokens的语义信息。

图片

Tokens转换为向量

  • Embedding框架:TensorFlow、PyTorch、Transformers
  1. TensorFlow:一个广泛使用的开源机器学习框架

  2. TensorFlow可以使用内置的Embedding层来将输入的tokens转换为向量。这个层通常接受输入词汇表的大小、嵌入向量的维度等参数。

  3. PyTorch:另一个流行的深度学习框架

  4. PyTorch同样提供了Embedding层来支持向量语义表示,与TensorFlow中的类似,也接受词汇表大小和嵌入向量维度等参数。

  5. Hugging Face’s Transformers:

  6. Transformers库是由Hugging Face开发的,它基于PyTorch和TensorFlow,提供了大量预训练的Transformer模型,如BERT、GPT等。这些预训练的模型已经包含了Embedding层,可以直接用于将输入的tokens转换为向量。

  • 向量语义相似度: 在训练过程中,算法学会了将含义相似的词汇映射到高维空间中相近的向量上。这使得我们可以通过计算向量间的相似度来评估词汇间的语义关系。

图片

向量语义相似度

阶段二:Attention(注意力机制)

*Attention模块帮助嵌入向量形成相关性,即确定它们如何相互关联以构建出有意义的句子或段落。*

图片

注意力计算公式

(1)Attention的目的:

  • 更新嵌入向量: 通过利用查询(Q)、键(K)和值(V)来计算注意力权重,我们能够对嵌入向量进行深入分析。这个过程使得不同的嵌入向量能够相互“交流”并基于彼此的信息来更新自身的值,从而实现嵌入向量间的有效互动和信息融合。

****图片

更新嵌入向量

  • 建立语义相关性: 嵌入向量(Embedding Vector)作为单词或文本片段的数值化表示,主要捕捉了这些文本单元的语义信息,但在原始状态下并不直接体现它们之间的相关性。Attention在特定的上下文环境中,识别哪些嵌入向量与当前任务最为相关,并据此调整或更新这些嵌入向量的表示,以强化它们之间的关联性。

图片

建立语义相关性

(2)Attention的工作流程(注意力计算Q、K、V):

  • 计算Q、K的点积(注意力分数): **Attention机制会计算Query向量与序列中所有单词的Key向量之间的点积(或其他相似度度量),得到一个分数。**这个分数反映了Query向量与每个Key向量之间的相似度,即每个单词与当前位置单词的关联程度。
  • Softmax函数归一化(注意力权重): 这些分数会经过一个Softmax函数进行归一化,得到每个单词的注意力权重。这些权重表示了在理解当前单词时,应该给予序列中其他单词多大的关注。
  • 注意力权重加权求和(加权和向量): 这些注意力权重与对应的Value向量进行加权求和,得到一个加权和向量。这个加权和向量会被用作当前单词的新表示,包含了更丰富的上下文信息。

图片

注意力计算Q、K、V

阶段三:MLPs(*多层感知机或前馈网络*

*Transformer的编码器和解码器中的每一层都包含一个全连接的前馈神经网络。FFNN通常包含两个线性变换,中间使用ReLU激活函数进行非线性处理。*

(1)MLPs在Transformer中的位置:

  • Transformer的编码器:包含两个主要的子层, 一个多头自注意力(Multi-Head Self-Attention)机制和一个全连接的前馈神经网络(MLP)。
  • __Transformer的解码器:包含三个主要的子层:*一个Masked Multi-Head Self-Attention机制(用于编码器的输出),一个Multi-Head Encoder-Decoder Attention机制(用于结合编码器的输出和解码器的当前位置信息),以及一个全连接的前馈神经网络(MLP)。***

图片

MLPs在Transformer中的位

(2)MLPs在Transformer中的作用:

  • ***非线性变换:*MLPs通过引入激活函数(如ReLU)提供非线性变换,*这有助于模型捕获输入数据中的复杂模式。***
  • *特征提取与整合:*MLPs进一步处理和转换注意力机制提取的特征,*提取和整合更多有用的信息,**使其能够学习更加复杂的函数关系。***

图片

MLPs在Transformer中的作用

阶段四:Unembedding(模型输出)

Transformers通过Softmax在生成输出时将原始注意力分数转换为输入标记的概率分布。这种概率分布将较高的注意力权重分配给更相关的标记,并将较低的权重分配给不太相关的标记。

(1)Softmax在Transformer的位置:
  • **Attention(注意力):**使用Softmax函数对这些相似度分数进行归一化,生成一个权重分布,该分布表示了在计算当前位置(query)的表示时,应赋予其他位置(keys)多大的关注程度。
  • **输出层(Output Layer):**产生一个未经归一化的分数向量(logits),其中每个元素对应于词汇表中一个词的概率。Softmax函数被应用于这个分数向量,将其转换为概率分布,其中每个元素表示生成对应词汇的概率。

图片

Softmax在Transformer的位置

(2)Softmax在Transformer的作用:

归一化: Softmax函数将原始分数转换为概率分布,确保所有概率之和为1,使得输出结果可以解释为概率。

  • 可解释性: 输出的概率分布使得模型预测结果更加直观和可解释,我们可以直接查看模型为每个可能输出分配的概率。

图片

Softmax在Transformer中的作用

在大模型时代,我们如何有效的去学习大模型?

现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型实际应用案例分享

①智能客服:某科技公司员工在学习了大模型课程后,成功开发了一套基于自然语言处理的大模型智能客服系统。该系统不仅提高了客户服务效率,还显著降低了人工成本。
②医疗影像分析:一位医学研究人员通过学习大模型课程,掌握了深度学习技术在医疗影像分析中的应用。他开发的算法能够准确识别肿瘤等病变,为医生提供了有力的诊断辅助。
③金融风险管理:一位金融分析师利用大模型课程中学到的知识,开发了一套信用评分模型。该模型帮助银行更准确地评估贷款申请者的信用风险,降低了不良贷款率。
④智能推荐系统:一位电商平台的工程师在学习大模型课程后,优化了平台的商品推荐算法。新算法提高了用户满意度和购买转化率,为公司带来了显著的增长。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值