Transformer原理以及运行机制

1.Transformer的“前世今生”

transformer最开始是在一篇为Attention is all you need首先提出来的。那么为什么作者会想要提出这样一种新的机制呢,作者到底想要进一步实现什么样的目标呢,那Transformer起到什么优化效果了呢?那我们一起简单说一下Transformer的“前世今生”吧。

最开始引入transformer是应用在机器翻译上。

最初,在机器翻译上,我们应用RNN,但是应用RNN做机器翻译有局限性,RNN只能解决多对多,一对多,多对一(N To N,I To N,N to I)的问题,但是我们在进行机器翻译时,输入的单词数目和输出的字符数目不一定是一一对应的,可能你输入的一段话中有5个单词,翻译成中文只有4个字,即RNN难以解决N To M的翻译问题。

后来为了解决这个问题,提出了Seq to Seq,这个模型解决了输入与输出两端单词数目不等的状况,Seq to Seq模型具有编码器Encoder和解码器Decoder。Seq to Seq模型会将输入传入Encoder,Encoder处理后传入一个意义单元,再传入Decoder进行处理,最后输出。但是又遇到一个问题,意义单元能存储的信息有限,如果输入的句子太长,翻译精度就会下降。

于是又提出了Attention(注意力机制),在Seq to Seq模型基础之上,生成每个单词时,都有意识的从原始句子中提取生成该单词时最需要的信息,摆脱了输入序列的长度限制,但是这样子的话,意味着Encoder要首先要看完整个句子中所有单词,这样计算就比较慢了,这不是我们期待的结果,所以,接着改进!

出现了Self-attention(自注意力机制),在输入的整句话中,先提取每个单词的意义,再依据生成顺序选取所需要的信息。(关于自注意力机制的内容,我会在记录在一篇新的文章中~~啦啦啦)

而transformer的运行机制中用到了Self-attention(自注意力机制),transform是sequence to sequence的一个模型,也就是说,输入是一个sequence,输出多长由机器决定。

2.Transfomer的原理与运行机制

基本原理

transformer模型主要分为encoder和decoder。基本原理就是输入一个序列(sequence),通过encoder的处理,再传入decoder中,由decoder进行处理,然后输出最后的结果。

 运行机制

(1)Encoder

如下图,此图来自李宏毅老师机器学习课程中的课件,很清晰的展示了encoder的结构以及作用。

左半部分,输入了一段sequence,这段sequence可以被分解成x1、x2、x3、x4这四个词语,每个词语都代表是一个向量。通过encoder的处理,生成新的四个向量,分别是h1、h2、h3、h4。这就是encoder的作用,即:产生与输入数量相等的新的对应向量。

右半部分就是encoder的内部具体运行机制。我们接下来展开说明~~~

 encoder的内部具体运行机制:

encoder内部是由多个Block组成,每个Block都是输入一排向量,然后输出一排向量。

那么Block又是怎么样的呢?

 一个Block内部的结构:

解释:输入一个sequence资讯,用自注意力机制考虑整个sequence中前后信息的关联,然后self-attention的输出与input相加(a+b),然后a+b的结果再做layer normalization(求均值和方差,具体layer normalization内部结构是什么样的,这里先不作过多解释),做完layer normalization后得到C,将C传入fully-connection(FC),然后FC操作后,得到D,D+C得到E,再做一次layer-normalization,然后终于输出一个block啦。(撒花~~~)

现在,我们已经知道一个Block,接下来其他的Block就是重复上面计算步骤啦~~~

一层层的Block终将成一排新的向量,也就是上文中的h1、h2、h3、h4啦!!!

(2)Decoder

在encoder的输出的向量后,会有一个标识符,这个标识符被称为begin,辨识到begin后,decoder会处理输入,然后再通过一个softmax分类,然后对比distribution里分数里最高的分数的那个对应字符,然后这个分数最高的字符就是我们要输出的那个字符。

输出第一个字符以后,下一个字符的输出要先辨识第一个字符已经输出,然后同时辨识到begin,然后重复上面的步骤输出第二个字符,后面的字符输出以此类推。

下面这个图表明,decoder会把自己上一时刻的输出当做自己的输入。

又是周而复始的一个过程啦~~~

 如果一段语音结束,我们要判断出这段语音结束了,end概率就要大一些,输出end

 Decoder的内部结构以及计算:

 与encoder有很多相似的地方,大家可以看着下图自行理解一下内部结构以及计算。

(3)对比encoder与decoder

通过图可以看出,在encoder中是self-attention,在decoder中是Masked self-attention。两者有什么区别呢?

encoder和decoder又是怎么建立联系的呢?

self-attention与Masked self-attention的区别

 self-attention:

这些b向量是考虑了所有a才生成出来的

 Masked self-attention:

大家注意,b1的产生考虑了a1,b2的产生考虑了a1和a2。。。。。。

也就是说bi的产生只考虑ai以及ai之前的输入的影响,不考虑ai之后的输入的向量的影响。(因为在实际应用中,我们根本不知道后面将要会出现什么样的输入。所以不考虑。)

 那么encoder与decoder是怎么传递资讯的呢?

 蓝色圈圈就是encoder传给decoder的向量啦,绿色的是decoder自身产生的一个向量

 q来自decoder,k1,k2,k3来自encoder

 以上就是我介绍的Transfomer的原理与运行机制啦~~~~

感谢李宏毅老师~~~

爱你呀!(这就是transformer的整个直观图啦)

 

  • 9
    点赞
  • 65
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Transformer是一种用于处理序列数据的深度学习模型架构,最初是由Vaswani等人于2017年提出的。这种模型特别适合自然语言处理任务,并在多种NLP应用中展现了卓越的效果,比如机器翻译、文本生成、问答系统等。 ### Transformer的工作原理 **注意力机制**:Transformer的核心创新之一是对传统RNN和LSTM结构中依赖顺序读取输入的方式进行了改变。它通过引入自注意力机制(self-attention),使得每个位置的表示都能够基于整个输入序列的所有其他位置的信息进行更新,而不仅仅是相邻的位置。这大大提高了模型对序列信息利用的能力和效率。 **多头注意力**:为了增强模型的表征能力,Transformer还引入了“多头”注意力的概念。这意味着模型同时关注输入序列的不同方面,每个“头”都专注于不同的上下文信息,最后将所有头的结果融合起来得到最终的输出表示。 **位置编码**:尽管注意力机制允许模型从任意位置开始计算,但在实际操作中,Transformer通常还会添加位置编码到输入序列中,以便模型能够意识到各个单词在句子中的相对位置。 **前馈神经网络**:除了注意力层之外,Transformer还包括了两层前馈神经网络(FFN)。这些FFN层用于调整输入到注意力层以及从注意力层输出的向量,以增强特征表示。 ### Transformer的应用实例 - **机器翻译**:如谷歌翻译中采用的Google神经机器翻译系统,就大量采用了Transformer架构,显著提升了翻译质量。 - **文本生成**:如在撰写文章、回复邮件、聊天机器人等领域,Transformer可以生成连贯且有意义的文本内容。 - **问答系统**:对于复杂问题的理解和回答,Transformer可以有效提取关键信息并提供准确的答案。 ### 实现Transformer的技术细节 构建一个Transformer模型通常涉及以下几个步骤: 1. **预训练**:通常先在大规模无监督数据集上进行预训练,然后针对特定任务进行微调。 2. **模型设计**:设计合适的模型结构,包括层数、头部数、隐藏维度大小等参数。 3. **优化算法**:选择适当的优化器(如Adam)、损失函数(如交叉熵损失)和正则化策略(如dropout)来提高模型性能。 4. **训练流程**:设置恰当的学习率衰减策略,监控验证集的表现,适时停止训练以避免过拟合。 5. **部署与集成**:将训练好的模型部署到生产环境,与其他服务或系统集成,用于实时预测或批处理任务。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值