AI大模型工程师学习路线,从零基础到精通,看这篇就够了!

学习大语言模型(Large Language Model, LLM)需要结合理论知识和实践操作。以下是系统化的学习路径和建议,适合不同基础的学习者:


一、基础准备
  1. 数学与算法基础
  • 数学:掌握线性代数(矩阵运算)、概率统计(贝叶斯、分布)、微积分(梯度相关)。

  • 机器学习:理解监督学习、无监督学习、损失函数、优化算法(如梯度下降)。

  • 深度学习:学习神经网络(CNN/RNN)、反向传播、正则化技术(如Dropout)。

  1. 编程技能
  • Python:熟练使用Python及科学计算库(NumPy、Pandas)。

  • 深度学习框架:掌握PyTorch或TensorFlow,熟悉张量操作和模型训练流程。

  • 工具链:学习Hugging Face Transformers库、LangChain等LLM生态工具。


二、核心理论与技术
  1. 自然语言处理(NLP)基础
  • 书籍:《Speech and Language Processing》(Jurafsky)

  • 课程:斯坦福CS224N(NLP with Deep Learning)

  • 文本表示:词袋模型、Word2Vec、GloVe、BERT嵌入。

  • 经典任务:文本分类、命名实体识别(NER)、机器翻译。

  • 学习资源:

  1. Transformer架构
  • 《Attention Is All You Need》(Transformer原论文)

  • 《BERT: Pre-training of Deep Bidirectional Transformers》

  • 核心组件:自注意力机制(Self-Attention)、位置编码、多头注意力。

  • 模型变体:BERT(双向编码)、GPT(自回归生成)、T5(文本到文本统一框架)。

  • 论文精读:

  1. LLM进阶技术
  • 预训练与微调:Masked Language Modeling(MLM)、Next Sentence Prediction(NSP)。

  • 高效训练技术:模型并行、混合精度训练、LoRA(低秩适应)。

  • 推理优化:量化、模型蒸馏、KV缓存。


三、动手实践
  1. 入门项目
  • 参考Hugging Face教程。

  • 使用Hugging Face快速调用API:```
    from transformers import pipeline generator = pipeline(“text-generation”, model=“gpt2”) print(generator(“Hello, I’m learning LLM because”, max_length=50))

  • 微调预训练模型(如用BERT做文本分类):

  1. 中级项目
  • 复现经典论文(如从头实现Transformer)。

  • 参与Kaggle竞赛(如NLP竞赛:文本生成、摘要生成)。

  • 构建应用:基于LLM的聊天机器人、文档问答系统。

  1. 高级探索
  • 预训练小型LLM(使用开源代码库如Megatron-LM、DeepSpeed)。

  • 研究RLHF(基于人类反馈的强化学习):OpenAI的InstructGPT/ChatGPT核心方法。

  • 探索多模态LLM(如CLIP、GPT-4V)。


四、持续学习与资源
  1. 学术跟踪
  • 顶会论文:NeurIPS、ICLR、ACL、EMNLP。

  • 论文库:ArXiv、Papers With Code。

  1. 行业动态
  • 关注OpenAI、Google AI、Meta AI等机构的博客和技术报告。

  • 开源项目:Llama 2、Falcon、Mistral等模型的代码和文档。

  1. 社区与交流
  • 论坛:Reddit的r/MachineLearning、Hugging Face论坛。

  • 中文社区:知乎、掘金、AI相关公众号(如「李rumor」「机器之心」)。


五、学习路线图(按时间规划)
  • 0-1个月:掌握Python/PyTorch,完成NLP基础课程。

  • 1-3个月:深入Transformer,复现BERT/GPT的微调任务。

  • 3-6个月:参与Kaggle竞赛或开源项目,学习分布式训练技术。

  • 6个月以上:研究LLM前沿技术(如MoE、长上下文优化),尝试预训练模型。


六、避坑建议
  1. 避免盲目调参:先理解模型原理,再优化代码。

  2. 重视数据质量:数据清洗和预处理常比模型结构更重要。

  3. 从简到难:不要直接挑战千亿参数模型,从BERT/GPT-2等小模型入手。


通过以上步骤,你可以逐步掌握LLM的核心技术,最终具备独立开发或研究的能力。保持好奇心,多动手实践是关键!

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值