2024年最新最全的大模型学习路线规划,对于零基础入门到精通的学习者来说,可以遵循以下阶段进行:
一、基础准备阶段
数学基础:
学习线性代数、微积分、概率论与数理统计等基础知识。这些数学基础对于理解大模型的原理和算法至关重要。
编程语言:
熟练掌握Python编程,这是大模型开发的首选语言。同时,了解常用的深度学习框架,如TensorFlow和PyTorch。
深度学习基础:
学习深度学习的基本原理和常用算法,如神经网络、卷积神经网络、循环神经网络等。
二、核心技术学习阶段
Transformer模型:
深入理解Transformer的原理、结构及其变种。Transformer是大模型技术的核心之一,其自注意力机制在处理序列数据方面表现出色。
预训练技术:
掌握大模型预训练的基本原理、方法和技巧。预训练技术是提高模型泛化能力的重要手段。
自然语言处理基础:
学习文本预处理技术、词嵌入、语言模型等NLP基础知识。这对于理解和应用大模型在自然语言处理任务中的表现至关重要。
三、实战项目阶段
基础实战项目:
尝试复现一些经典的大模型项目,如GPT系列、BERT等。通过实战项目,加深对大模型技术和应用的理解。
领域特定实战项目:
根据自己的兴趣或职业需求,选择特定领域的实战项目,如基于大模型的文档智能助手、医学命名实体识别系统等。这些项目将帮助你掌握大模型在特定领域的应用技能。
四、高级技能学习阶段
大模型API应用开发:
学习如何使用大模型API进行应用开发