『深度长文』4种有效提高LLM输出质量的方法!

LLM,全称Large Language Model,意为大型语言模型,是一种基于深度学习的AI技术,能够生成、理解和处理自然语言文本,也因此成为当前大多数AI工具的核心引擎。LLM通过学习海量的文本数据,掌握了词汇、语法、语义等方面的知识,从而可以用于各种语言任务,如文本生成、翻译、摘要、问答等。这些模型通常具有数十亿、千亿甚至万亿(据传早期的GPT-4参数量为1.76万亿)的参数,能够捕捉到语言中的复杂关系,生成近似于人类语言的输出。

LLM的工作原理基于神经网络架构,尤其是基于Transformer架构的模型最为常见。这些模型通过概率计算来预测下一个词或句子的可能性,从而生成连贯的文本。训练过程中,模型会从大量的文本数据中学习语言模式,并通过不断调整模型参数,使其能够在给定输入下生成最可能的输出。而正由于其生成文本的概率性特点,模型有时会输出不准确或不适当的内容,甚至会产生所谓的“幻觉(Hallucination)”——生成虚假或不真实的信息,即一本正经的胡说八道。

那么,能否完全避免AI幻觉,让LLM输出完全可靠的结果呢?从本质上来说,没有任何一种方法能消除AI幻觉,这是由LLM的工作原理所决定的。虽然AI幻觉无法被彻底解决,但我们却能够采取一系列的方法尽可能地减少AI幻觉出现的概率,从而提高LLM的输出质量,这也正是今天文章的主题。

1. 提示工程(Prompt Engineering)

提示工程Prompt Engineering)是指通过设计和优化输入给LLM的提示语句,以最大限度地提高模型生成输出的质量。这一技术是改善LLM输出的最便捷和经济有效的方法,特别是在不需要对模型进行复杂微调或训练的情况下。提示工程的核心是通过提供适当的上下文、示例和明确的指示,来引导LLM生成更加准确、相关和有用的结果。

提示工程的重要性在于它不仅能帮助企业和个人快速部署AI应用,还能在有限的资源和时间内获得较好的模型输出质量。通过优化提示,用户可以克服LLM的某些局限性,如文本生成中的不确定性和可能出现的“幻觉”。

提示工程的技巧示例

  1. 零样本提示(Zero-Shot Prompting)
    零样本提示指的是直接向模型提出一个问题或任务,而不提供任何示例。虽然这种方法简单且不需要任何额外的数据准备,但对于复杂任务,零样本提示可能难以生成准确的结果。这种方法仅适用于模型已经掌握了相关领域知识的简单任务

  2. 少样本提示(Few-Shot Prompting)
    少样本提示则通过在提示中包含一到多个示例,来帮助模型更好地理解任务的要求。通过提供相关示例,模型能够更准确地推断出如何处理新的输入。这种方法特别适合需要特定格式或风格的任务

    实际案例
    如果你希望模型生成产品描述,并确保它涵盖特定的卖点,可以使用以下提示:“请为这款蓝牙耳机写一个简短的产品描述。例如:‘这款无线蓝牙耳机具有超长电池寿命、高保真音质和舒适佩戴体验,是您日常通勤的最佳伴侣。’”提供了一个示例后,模型会更倾向于生成类似风格和结构的描述。

  3. 思维链提示(Chain-of-Thought Prompting)
    思维链提示是一种引导模型逐步推理和解决复杂问题的技术。这种方法特别适用于需要模型进行逻辑推理或多步计算的任务。通过分解问题并逐步引导模型推导出答案,思维链提示能够提高模型在复杂任务上的准确性

    实际案例
    例如,你要求模型解决一个数学问题:“如果一个人以每小时5公里的速度行走3小时,然后以每小时10公里的速度骑自行车2小时,总共走了多远?”思维链提示可以是:“首先,计算他行走的距离:5公里/小时 × 3小时 = 15公里。接着,计算他骑自行车的距离:10公里/小时 × 2小时 = 20公里。最后,将两个距离相加,总距离为15公里 + 20公里 = 35公里。”

  4. 思维树提示(Tree-of-Thought Prompting)
    思维树提示是一种更高级的提示方法,特别适合解决复杂问题。在这种方法中,模型被引导生成一个树状结构的思维路径,探索多个可能的解决方案,并通过自我评估选择最优解。思维树提示能够显著提高模型在多步骤推理任务中的成功率

    实际案例
    在解决一个涉及多个变量和条件的决策问题时,思维树提示可以指导模型分别探索不同的路径,并逐步缩小选择范围。例如,在一个复杂的供应链管理场景中,模型可以被提示分析不同供应商、运输方式和成本的组合,并最终推荐最佳方案。

2. 检索增强生成(RAG)

检索增强生成Retrieval-Augmented Generation,RAG)是一种结合信息检索与文本生成的技术,旨在克服LLM固有的局限性。LLM通常在训练时使用的是通用领域的语料库,这使得它们在处理领域特定或时间敏感的任务时表现不佳。而RAG通过动态地从外部数据源中检索相关信息,将其与模型生成的文本结合,能够显著提升模型在这些任务中的表现。

RAG的组成部分

  1. 信息检索
    RAG的核心是信息检索组件,它从外部数据源(如数据库、文档库或网页)中提取相关内容。检索过程通常包括以下步骤:

    实际案例
    假设某企业开发了一款内部IT支持聊天机器人,当用户询问“如何重置公司邮箱密码?”时,RAG系统首先会从内部知识库中检索与“重置密码”相关的文档片段。这些片段可能包括具体的操作步骤或政策指南,确保模型在回答时提供最新、最准确的信息。

  • 数据预处理:将数据源中的文本分割成适合检索的片段,并将它们转换为嵌入(Embeddings)向量。

  • 检索查询:将用户的输入(如一个问题或命令)转换为嵌入向量,并在预处理后的数据中搜索相似度最高的片段。

  • 相似度计算:通过计算输入嵌入与数据嵌入之间的相似度得分,选择最相关的片段作为检索结果。

  1. 文本生成
    一旦检索到相关信息,RAG系统会将这些信息作为上下文传递给LLM,帮助它生成符合用户需求的高质量文本。这个生成过程依赖于模型对上下文的理解和融合能力,从而输出更为准确、连贯的响应。

    实际案例
    延续上述案例,当RAG系统检索到的片段被传递给LLM后,模型生成的响应可能是:“要重置公司邮箱密码,请访问内部IT服务门户,并按照以下步骤操作:1. 登录后点击‘账户管理’,2. 选择‘密码重置’,3. 按照系统提示完成操作。”通过结合检索到的具体步骤,模型能够给出准确且易于操作的指导。

RAG技术适用场景

RAG在许多知识密集型任务和动态数据环境中表现尤为突出,尤其是在以下场景中:

  • 客户支持和服务:企业可以通过RAG技术在客户查询时动态检索内部知识库的最新文档,为客户提供准确的支持信息。

  • 医疗咨询:RAG可以帮助医疗AI应用程序从最新的医学文献中检索相关信息,确保生成的诊断或治疗建议基于最新的研究成果。

  • 法律和合规性分析:在法律领域,RAG能够检索最新的法规或判例,辅助法律AI工具生成合法合规的建议。

RAG技术挑战与优化

  1. 检索器和LLM的对齐
    在RAG系统中,检索结果的质量对最终生成文本的质量有直接影响。因此,确保检索器输出与LLM生成的文本在语义上高度一致至关重要。这种对齐过程通常包括对检索器的微调,使其更加贴合LLM的生成偏好,从而提升系统整体性能。

  2. 迭代与自适应检索
    在某些复杂的任务中,一次检索可能无法提供足够的信息。此时,迭代检索和自适应检索技术可以进一步提高检索结果的相关性。迭代检索允许模型在生成部分回答后再次进行检索,以补充更多信息;而自适应检索则根据任务的具体需求动态调整检索策略,从而更好地支持多步骤推理任务。

3. 微调模型(Fine-Tuning Models)

微调Fine-Tuning)是通过在现有大型语言模型(LLM)的基础上,使用特定任务或领域的数据进行额外的训练,以优化模型在特定应用中的表现。与提示工程和检索增强生成(RAG)相比,微调能够使模型深入理解特定领域的内容,从而生成更为精确和上下文相关的输出。微调的一个关键优势在于,模型通过吸收特定数据集的知识,不再需要依赖外部的提示或上下文,直接生成高质量的输出。

微调过程概述

  1. 数据收集与标注
    微调的首要步骤是数据的收集和标注。成功的微调依赖于一个高质量且与任务紧密相关的数据集。这个数据集通常包含大量的输入-输出对,这些对可能包括文本片段与相应的期望回答、问题与正确答案、或对话记录与响应等。

    实际案例
    某金融机构希望优化其客户服务AI助手的表现。通过微调,他们收集了数万条客户与客服的实际对话记录,并标注了每条记录中客服的正确回复。通过这种方式,微调后的模型能够更好地理解客户的需求,并以符合企业政策的语言进行响应。

  • 数据收集:在准备微调数据时,企业需要从内部数据库、文档、客户交互记录等多种来源中提取相关信息。数据的多样性和丰富性直接影响微调模型的效果。

  • 数据标注:标注过程是确保模型在微调时能够正确学习的关键。每个输入都需要明确标注其对应的输出,并尽可能多地涵盖不同的场景和异常情况,以便模型能够全面理解任务。

  1. 模型调整
    在数据准备完成后,微调过程正式开始。微调的核心是在预训练模型的基础上,通过调整模型的参数来使其适应特定任务。

    实际案例
    在医疗领域,一个医疗AI助手通过微调大量标注过的医学文献和病例数据,能够为医生提供更准确的诊断建议。这种微调不仅增强了模型的专业性,还确保了输出的合规性和准确性。

  • 模型选择:微调通常选择一个预训练好的基础模型(如GPT-4或Llama),然后在这个模型上进行特定任务的微调。这种方法利用了模型已有的广泛语言知识,只需对特定领域的内容进行微调即可。

  • 训练过程:在微调过程中,模型会通过多次迭代学习标注数据,并逐步调整其内部权重,使其能够更好地完成特定任务。训练过程中的超参数设置(如学习率、批次大小等)对于最终效果至关重要。

微调高级技术

  1. 参数高效微调(Parameter-Efficient Fine-Tuning, PFT)
    在传统的微调中,模型的所有参数都会进行调整,这可能导致较高的内存和计算资源需求。参数高效微调技术通过仅调整模型的一部分参数,如自注意力层中的查询和键投影矩阵,从而显著减少资源消耗,同时保持模型的表现力。
  • LoRA(Low-Rank Adaptation):LoRA是一种流行的PFT技术,通过在模型的特定层中插入低秩矩阵,来实现参数高效的微调。这种方法允许在不大幅增加计算开销的情况下,对模型进行细微调整,适用于内存有限的环境。
  1. 量化技术
    量化技术是一种通过将模型的浮点数权重压缩为低精度数值(如16位或8位)来减少内存占用的方法。这种方法在保持模型性能的同时,显著降低了对硬件的要求。
  • QLoRA:这种方法结合了4位量化的基础模型与16位浮点数适配器,能够在极大减少内存需求的同时,保持模型的生成质量。

微调适用场景

微调模型适用于以下场景:

  • 大规模任务:当企业需要处理大量的用户请求或生成大量的特定领域内容时,微调能够显著提高效率和质量。

  • 领域专用任务:在需要深度领域知识的任务中,如医疗、法律、金融等,微调能够确保模型输出的专业性和准确性。

  • 隐私和安全要求高的任务:由于微调后的模型不需要外部数据支持,其内置的知识库能够降低数据泄露的风险,适合在高隐私要求的环境中使用。

4. 从头训练模型

从头训练大语言模型Trained Model)是指在没有预训练模型的基础上,从零开始构建一个新的模型。这一过程极其复杂且资源密集,但在某些特定的应用场景中,它是最为合理的选择。当企业或研究机构需要开发一个完全适应其独特领域需求的模型,且现有的预训练模型无法满足这些要求时,从头训练可能是唯一的选择。

  • 领域专用任务:如果某个领域的数据与通用领域数据有显著差异,比如在医学、法律或金融领域,从头训练一个模型可以确保模型能够充分捕捉和理解这些领域特有的语言和知识。

  • 隐私和安全要求高的任务:当涉及高度敏感的私人数据时,从头训练可以确保整个模型的知识库仅包含企业或组织内部的数据,从而避免数据泄露的风险。

  • 超大规模任务:对于一些超大规模的应用,比如涉及数亿用户的全球性服务,拥有一个完全定制的模型可以显著提高效率和响应速度。

从头训练的挑战

  1. 数据需求

从头训练模型的首要挑战在于数据需求。一个高质量的LLM训练需要庞大的数据集。以目前最先进的LLM为例,它们通常需要数百亿甚至上万亿的训练样本。这些数据必须涵盖广泛的主题,并且必须经过仔细的清洗和预处理,以确保它们适合用于模型训练。

  • 数据来源:数据可以来自公开数据集、专有数据集以及用户生成内容。对于领域特定的模型,数据可能需要从专业文献、领域专家的书籍、内部文件和历史记录中获取。

  • 数据清洗和标注:原始数据通常包含噪音、错误信息或不相关内容,因此数据清洗至关重要。此外,对于某些特定任务,数据可能需要标注,这进一步增加了从头训练的复杂性和成本。

  1. 计算资源

训练LLM需要巨大的计算资源。现代的LLM可能包含数十亿甚至上万亿的参数,这需要高性能计算集群的支持。通常,企业需要使用数千个GPU并行处理数周甚至数月,才能完成模型训练。

  • 计算成本:如Meta的LLaMA模型训练耗时超过100万小时,使用了2048个NVIDIA A100-80GB GPU,成本高达数百万美元。这类计算需求对大多数企业来说是巨大的投资,通常仅有大型科技公司或专注于人工智能的研究机构能够承担。

  • 优化技术:在训练过程中,常常需要使用模型并行、数据并行和混合精度训练等技术来优化资源利用率并加快训练速度。这些技术要求团队拥有高度的技术专长和经验。

  1. 技术专长

从头训练模型需要高度专业化的技术团队,他们不仅需要具备深度学习的知识,还需要对特定领域有深刻理解。这种技术专长包括但不限于以下几个方面:

  • 模型设计:选择适合特定任务的模型架构,如Transformer,BERT等,并根据任务需求调整超参数。

  • 数据工程:数据收集、清洗、标注和增强需要专业的数据工程技术,以确保模型训练的数据质量。

  • 训练优化:应用诸如学习率调度、梯度剪裁、早停等技术,以提高模型训练的效率和效果。


在大模型时代,我们如何有效的去学习大模型?

现如今大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
在这里插入图片描述

掌握大模型技术你还能拥有更多可能性

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也_想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家_。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,下面是我整理好的一套完整的学习路线,希望能够帮助到你们学习AI大模型。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

三、AI大模型经典PDF书籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

在这里插入图片描述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、AI大模型各大场景实战案例

在这里插入图片描述

结语

【一一AGI大模型学习 所有资源获取处(无偿领取)一一】
所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

  • 10
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值