一文带你读懂token是什么,怎么计算?

小伙伴们,今天咱们来聊聊如何分析一段文本中包含了多少个token。

这可是在使用大语言模型时一个非常实用的技能哦!

什么是token?

在自然语言处理领域,token指的是一段文本经过分词后得到的最小语义单元。比如中文里,一个token通常就是一个词语;而在英文中,一个token可以是一个单词,也可以是标点符号。

举个栗子,对于这样一段文本:“今天天气真不错!我们去郊游吧。” 分词后得到的token序列是:

["今天", "天气", "真", "不错", "!", "我们", "去", "郊游", "吧", "。"]

一共有10个token。

如何统计token数量?

要统计一段文本的token数量,我们首先要对文本进行分词。在Python中,可以使用jieba等分词库来实现。下面是一个简单的示例代码:

import jieba

text = "今天天气真不错!我们去郊游吧。"
tokens = jieba.lcut(text)
print(tokens)
print(f"Token数量: {len(tokens)}")

运行结果:

['今天', '天气', '真', '不错', '!', '我们', '去', '郊游', '吧', '。']
Token数量: 10

是不是很简单呢?

💡 温馨提示:对于中文文本,jieba默认使用精确模式进行分词。如果想要使用其他模式,如全模式、搜索引擎模式,可以传入cut_allHMM参数。例如: jieba.lcut(text, cut_all=True) 使用全模式分词。

不同语言的token划分

需要注意的是,不同语言在进行token划分时可能有所不同。比如:

  • 英文通常以空格作为单词的分隔符,每个单词和标点符号都被视为一个token。

  • 中文则需要先进行分词,再将每个词语作为一个token。

  • 日语、泰语等语言没有明显的词语边界,需要使用更复杂的算法进行分词和token划分。

因此在统计token数量时,要根据具体的语种选择合适的分词工具和策略。

token数量对模型的影响

在使用GPT、BERT等大语言模型时,我们经常会遇到模型的最大token数限制,超过这个限制的文本将无法被处理。

所以在将文本输入模型前,我们需要先估算token数量,确保不会超限。如果文本过长,可以考虑将其切分成多个片段分别处理。

此外,模型的训练和推理耗时也与token数量正相关。输入的文本越长,所需的计算资源和时间就越多。在实际应用中,我们需要在任务需求和计算效率间寻求平衡。

小结

好啦,今天我们学习了如何统计一段文本的token数量,了解了不同语言的token划分方式,以及token数量对于大语言模型的影响。这些知识在实际应用中非常有用,特别是在使用API接口时,我们需要时刻关注token用量,避免超限导致请求失败。

小伙伴们,今天的Python学习之旅就到这里啦!祝大家学习愉快,Python学习节节高!

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值