2025年AI大模型赋能企业数字化转型(文档)

在数字经济蓬勃发展的2025年,AI大模型正以前所未有的速度重塑企业运营模式,成为推动数字化转型的核心引擎。AI大模型已从实验室创新阶段进入产业落地期,技术能力突破、成本断崖式下降、多模态应用深化三大趋势,使企业能够以较低成本获取高性能AI能力,从而加速数字化转型进程。据《2025年人工智能指数报告》显示,达到GPT-3.5水平的系统推理成本在过去两年间下降了280倍,硬件成本每年降低30%,能效每年提升40%,这使得AI大模型从"奢侈品"逐渐转变为"必需品"。

本报告系统梳理了AI大模型的技术发展现状、企业数字化转型的核心需求与痛点、各行业的落地案例与经验,以及企业AI转型的行动指南,旨在为2025年企业数字化转型提供战略参考。

一、AI大模型技术发展现状及趋势

2025年的AI大模型技术已进入智能体时期,呈现出参数规模持续突破、多模态能力显著增强、端侧部署快速推进、推理效率大幅提升等特征。从参数规模看,中国头部大模型已突破万亿级,如华为"盘古Ultra MoE"达1.2万亿参数,北京智源"悟道2.0"达1.75万亿参数,且训练效率大幅提升,例如盘古Ultra MoE在FP16精度下的算力达到512PetaFLOPS,芯片利用率达82%。值得注意的是,模型规模增速放缓,技术重心转向算法优化与多模态能力提升,如DeepSeek-V3以6710亿参数和55天训练时间,远低于GPT-4的训练成本和所需GPU数量及规格,仅为GPT-4十分之一成本,这标志着AI大模型从"大而全"向"小而精"演进,针对特定任务优化成为新方向。

在技术架构层面,Transformer架构仍是主流,但其计算复杂度过高(自注意力机制计算复杂度为O(N²d))的局限性日益凸显。为解决这一问题,研究人员探索了多种替代或增强架构,如RetNet(融合RNN和Transformer优点,推理成本低)、Mamba(计算开销线性增长,能高效处理长序列)、RWKV(RNN变体,具有恒定显存占用、无限上下文长度等优势)和Hyena(计算复杂度低但不支持Mask)。这些创新架构在降低计算复杂度的同时,也在探索与物理世界的深度交互,如"盘古气象大模型"实现了分钟级全球气象预测,准确率超传统数值模型;"风乌GHR"气象大模型突破了传统数值预报方法对物理方程的高度依赖,将预报分辨率提升至0.09经纬度(9km×9km),范围精确超过7倍,有效预报时长由10.75天提升至11.25天。

在应用场景方面,AI大模型正从通用领域向垂直行业深度渗透,形成"通用模型+垂直领域模型"的协同应用范式。例如,医疗领域出现了APUS医疗大模型(河南省儿童医院应用)、医渡科技临床试验平台(北大肿瘤医院部署);工业领域有卡奥斯COSMO-GPT(海尔旗下)、浪潮智产大模型(覆盖八大行业);农业领域有中国移动"万象耕耘"农业大模型(整合超4000万条农业专业知识);金融领域有宇信科技AI一体机(国有大行分行部署)、京北方智能体(Manus)等。这些模型通过多模态融合、端侧部署、RAG技术(检索增强生成)等手段,解决了行业中的具体问题,如医疗诊断准确率提升、工业质检效率提高、农业资源优化配置等。

二、企业数字化转型的核心需求与痛点

企业数字化转型的核心需求与痛点可归纳为四个关键维度:战略与组织适配、数据整合与治理、技术与业务融合、人才与文化重塑。

在战略与组织维度,63.16%的企业面临业务部门不支持的问题,43.86%的企业面临领导不支持,40.35%的企业面临非专业人员干涉。这反映出企业数字化转型中普遍存在的战略执行脱节问题。Gartner报告指出,CIO的新角色是战略决策的影响者,需提升影响力技能,如打造个人品牌、讲故事以及与管理层沟通的能力。然而,许多企业尚未形成清晰的数字化战略规划,导致资源分散和转型效果不佳。埃森哲《2024年中国企业数字化转型指数》显示,中国企业平均得分为46分(以100分为最先进数字企业),在"开创竞争新前沿"上的得分增长最快,而在"打造数字核心"和"释放人才力量"等指标上的得分依旧偏低,这表明企业在构建数字化能力方面仍有较大提升空间。

在数据整合与治理维度,数据孤岛、数据质量差、数据安全风险是主要障碍。据调查,59%的受访企业计划在未来一年对数字化转型项目增加投资,其中46%认为生成式AI将为企业营收增长提供新机会,44%认为它能助力企业提升效率,远高于全球平均水平。然而,仅有15%的中国企业成立了人工智能相关团队,有专门的战略和预算;32%的受访中国企业高管表示正在尝试重新设计现有的工作岗位,以适应生成式人工智能等新兴技术,这一比例远低于全球平均数字(46%)。这导致企业在数据治理、系统集成等方面面临挑战,难以实现"业务通、数据通、流程通"的目标。

在技术与业务融合维度,企业普遍面临技术能力不足与业务需求不匹配的问题。例如,制造业中有61%的CIO认为数字化转型目标不明确是造成转型失败的主要原因;金融业中,业务部门对IT系统需求不明确的问题也普遍存在,如ERP系统功能虽有几千项,但实际应用可能不到30%。这反映出技术与业务部门之间沟通不畅,信息化部门费力建设的系统却难以满足业务部门的实际需求,导致系统建设与实际需求脱节。此外,企业还面临技术选型误区,如盲目追求大模型导致"高炮打蚊子"(如DeepSeek部署后仅用于简单问答),或选择不匹配的供应商(如某企业因大厂"PPT选型"失败)。

在人才与文化重塑维度,人才短缺与变革阻力是关键痛点。据调查,61.4%的企业认为数字化转型中缺乏人才是主要障碍。具体而言,企业需要培养具备数据分析、云计算、物联网等数字化转型核心领域技能的复合型人才,同时需要推动组织结构扁平化与领导层支持。例如,制造业中,员工能力需通过技能培训、管理培训与数字化应用培训提升;金融业中,高管层需增强对AI技术的认知和应用,提升"硬"实力和"软"技能,全面领导企业重塑。然而,企业内部往往存在员工保守态度和变革抵抗,如担心新技术影响岗位和利益,从而影响转型落地效果。此外,企业还面临人才培养体系不完善的问题,如缺乏系统化的培训规划、内部知识共享机制缺失等。

(注:需要资料的朋友可直接滑到文末↓)

三、AI大模型在各行业的落地案例与经验

AI大模型已在多个行业实现深度落地,其应用价值主要体现在三个方面:一是通过多模态处理打破数据孤岛;二是通过端侧部署与行业知识融合解决垂直场景需求;三是通过智能体技术实现业务流程自动化。

制造业应用案例:卡奥斯COSMO-GPT(海尔旗下)是百亿参数工业大模型,内置4700多个机理模型、200多个专家模型和超过110个智能体开发工具,功能覆盖智能问答、文本生成、图文识别、控制代码生成等,已在工业指标优化、设备运维等场景落地,推理准确率达96%。浪潮智产大模型聚焦装备、电子、食品等八大行业,支持私有化部署,通过大模型+小模型融合应用输出生成式及确定式能力。网易伏羲工业大模型将游戏技术迁移至工业场景,开发无人装载/挖掘机器人,应用于基建场景,实现人工成本降低39.58%,作业精度误差仅2厘米。东莞AI大模型中心是全国首个专注于制造业的城市级AI大模型中心,依托华为昇腾910B芯片集群提供算力支持,采用"算力即服务"模式降低中小企业的技术门槛。这些案例表明,制造业转型成功的关键在于将AI与行业知识深度融合,建立"大模型+机理模型+专家模型"的多层次架构,同时通过云服务或端侧部署降低实施成本。

金融业应用案例:宇信科技AI一体机基于DeepSeek大模型,覆盖信贷、营销、数据三大场景,实现"硬件+软件+模型"全栈服务,某国有大行分行上线后核心KPI跃居全国前三,客户黏性提升50%。京北方自主研发Manus通用智能体,在智能运维、投研报告生成等场景实现人效提升6倍。百融云创发布一体化AI绿色金融方案,自动化环境效益测算与ESG风险评估,契合政策红利。这些案例表明,金融业AI转型的成功经验包括:选择合规性强的模型(如文心一言)应对数据隐私;分场景选型(通用模型+垂类模型协同);通过智能体技术实现业务流程自动化。特别是将AI能力嵌入业务流程而非独立技术项目,如某股份制银行通过模型自动化处理,信贷审批周期从3天缩短至1小时,不良率下降15%;某城商行借助AI客户画像,理财产品转化率提升35%,营销成本下降20%。

农业应用案例:中国移动"万象耕耘"农业大模型基于九天人工智能基座,整合超4000万条农业专业知识,具备农技知识问答、农情智能预警、农田智慧灌溉等五大核心能力。在河北南和区,该模型通过DeepSeek分析土壤墒情,生成智能灌溉方案,节水30%,肥料利用率提升15%,亩均节本增效超百元。浙江瑞安的无人机团队通过大疆M3M多光谱无人机与AI结合,实现病虫害防治效果提升10%,农药成本降低30-50元/亩,水稻增产5%-8%。马桥万亩方未来农场部署了50余台传感器,结合DeepSeek模型预测作物需水量和施肥方案,使育秧周期缩短5天,出芽率提高10%。这些案例表明,农业AI转型的成功经验在于端侧部署(如昇腾芯片)降低算力成本;多模态数据融合(遥感+传感器)提升决策效率;政策支持(如农业数据标准化)加速落地。特别是通过"云端大脑+田间神经"的智能体系,实现从经验驱动到数据智能的转变。

医疗行业应用案例:医渡科技与北京大学肿瘤医院合作,利用大数据+大模型技术打造智能筛选系统,为肿瘤类项目平均节省88.5%人工筛查成本,非肿瘤类项目平均节省69.8%人工筛查成本。APUS医疗大模型在河南省儿童医院实现精准健康咨询、个性化治疗推荐、智能分诊等服务,有效缓解医疗资源紧张状况。云知声"山海"大模型支持门诊病历生成系统,通过智能筛选医患对话中的关键信息,自动生成结构化病历,医生只需稍作修改即可完成标准病历,大幅提升了病历书写的效率。这些案例表明,医疗AI转型的成功经验包括:联邦学习与差分隐私技术保护患者数据;知识图谱+多模态分析(如超声影像)提升诊断精准度;分阶段验证(如先试点后推广)降低风险。特别是通过"大模型+行业知识库+RAG技术"的组合,解决医疗领域的高精度需求。

能源行业应用案例:中广核AI大模型已上线13个典型应用,包括核电备件库存管理、辐射防护、智能工单处理等场景。宁德核电基地发布的核工业大语言模型应用平台"云中锦书",实现了为每位员工定制专用培训库,提升了培训效率和针对性。云鼎科技与中广核合作,将DeepSeek-R1蒸馏为垂域矿山大模型,安全生产问答准确率达96%以上,部署NLP应用智能体优化巡检流程,减少固定岗位工15人。化工领域案例显示,通过大模型分析精馏塔工艺参数,某企业单套设备节约2%的蒸汽消耗量,年节约约400万元成本。这些案例表明,能源行业AI转型的关键在于行业数据集训练垂域模型;"工厂式"开发路径(预训练+微调)缩短部署周期;与硬件结合(如智能机器人)实现物理世界交互。特别是通过"大模型+小模型"的混合架构,解决能源领域的复杂决策问题。

零售业应用案例:天虹超市与灵智数科合作开发垂直大模型"百灵鸟AI",实现智能导购(挖掘隐形需求提升客单价)、AI试衣(减少人工依赖)、工单处理效率提升30%。绝味鸭脖发布的AI点餐智体"小火鸭",基于腾讯混元与DeepSeek双模型驱动,趣味交互缩短决策时间,夜宵场景客单价提升。AI店长"绝智"集成全国上千位金牌店长运营经验,日均服务4万名店员,门店运营效率提升39%。这些案例表明,零售业AI转型的成功经验包括:选择轻量化模型(如LLaMA 3)降低算力需求;分阶段落地(从高频场景开始);通过智能体技术实现个性化服务。特别是通过"大模型+小模型"的协同,解决零售场景中的长尾需求问题。

四、企业AI转型的行动指南

基于上述分析,企业AI转型的行动指南可从技术选型、人才培养和生态合作三个维度展开,形成系统化实施路径。

技术选型策略:企业应根据自身规模、业务场景和资源条件,选择合适的AI大模型技术方案。技术选型决策框架包括五个步骤:一是需求分析,明确高频高价值场景(如智能客服、供应链优化)和业务目标;二是资源评估,评估自身在数据、算力、人才方面的资源条件;三是供应商评估,考察不同技术供应商的案例经验、技术实力和服务支持;四是试点测试,选择小范围场景进行试点,验证模型效果和适用性;五是成本效益分析,综合考虑部署成本、运营成本与预期收益,选择性价比最优的技术方案。

具体而言,企业可选择三种技术路径:一是直接调用通用大模型能力,在基础模型上通过提示词、思维链、外挂知识库(如RAG技术)实现场景适配,适合业务探索阶段;二是做微调训练或全参数预训练,灌输行业或企业自己的数据集形成垂直大模型,适合任务场景明确且具备长期稳定性的企业;三是混合部署模式,通用大模型处理基础问题,行业大模型解决垂直需求,如绝味鸭脖"小火鸭"采用腾讯混元与DeepSeek双模型驱动,既保证基础能力,又满足专业需求。

技术选型需重点关注模型的多模态支持、上下文长度、推理成本和行业适配性。例如,制造业可优先选择卡奥斯COSMO-GPT(内置4700多个机理模型)或网易伏羲工业大模型(支持无人操作);金融业可选择宇信科技AI一体机(合规性强)或京北方智能体(Manus);农业可选择惠农智脑平台(DeepSeek模型)或大疆M3M多光谱无人机系统;医疗可选择医渡科技临床试验平台或云知声"山海"大模型;能源行业可考虑中广核AI大模型或云鼎科技矿山大模型。

技术选型维度

通用大模型

垂直行业大模型

混合部署模式

适用场景

初期探索、多任务处理

专业性强、任务明确

专业需求与基础能力兼顾

核心优势

技术成熟度高、通用性强

行业适配性好、专业性强

兼顾基础能力与垂直需求

典型案例

DeepSeek、GPT-4

卡奥斯COSMO-GPT、百灵鸟AI

绝味鸭脖"小火鸭"、中广核"云中锦书"

实施周期

短(1-3个月)

长(3-6个月)

中等(2-4个月)

预期效果

快速验证可行性

专业场景深度优化

全业务流程智能升级

参考资料》》重磅!888个智能数据治理方案+AI大模型+数据管理+Deepseek·Manus+数智化+平台建设与解决方案(附案例+可下载)

人才培养体系:数字化转型需要构建复合型人才团队,包括技术开发、业务应用和战略管理三类人才。人才培养实施步骤包括:一是需求分析,评估企业当前数字化水平和人才状况,确定数字化转型所需技能和能力;二是制定培训计划,根据需求分析结果设计定制化培训课程,覆盖AI基础、业务场景应用、伦理与安全等核心内容;三是实施培训,采用线上线下结合的方式(如学习平台+实践演练),同时设立学习小组促进内部交流;四是培训评估,通过考试、作业、项目实践等方式考核员工学习成果,并将考核结果与绩效评估挂钩;五是持续优化,根据评估结果不断改进培训内容和方式,建立长效学习机制。

关键人才培养策略包括:设立数字化委员会统筹战略(如广发银行);建立"300-30-3"人才梯队计划(如宁德核电);采用KPI+OKR+微徽章三位一体激励机制(如平安证券);实施量化思维与技能认证(如中原银行"数赢"品牌);开展线上线下结合的特训营(如国泰君安与极客时间合作)。此外,企业可借鉴青软集团的"U+平台"模式,整合500+课程、300+产业级项目案例和2000+行业实验资源,搭载AI伴学、数字人、AI出题等能力,构建覆盖"教、学、练、管、评、测"全流程的数字化人才培养体系。

生态合作策略:企业AI转型需构建多层次的生态合作体系,包括技术生态、行业生态和政策生态。技术生态合作方面,企业可接入云服务商平台(如阿里云千帆、华为云昇腾),利用API与工具链加速落地。例如,华为云昇腾云为湖北宜兴、新疆克拉玛依等地密集上线DeepSeek服务,提供弹性、充足的AI算力。行业生态合作方面,企业可与垂类解决方案商共创,如司马阅与医疗/金融企业合作,提供"产品共创"和"市场共拓"模式。例如,华胜天成与百度智能云合作,依托百度百舸、百度智能云千帆能力,向政府、央国企客户提供算力基础设施的建设、运营及服务,在南方电网项目中,力维智联认证的大模型专业服务工程师展现出过硬的技术能力。政策生态合作方面,企业可依托政府算力基建(如东莞AI大模型中心),参与行业标准制定,如华为昇腾芯片适配国产化。

生态合作需建立系统性风险管理框架,包括:设立跨职能治理委员会(数据科学家+伦理学家+DEI专员),制定RAI原则(如微软六大核心原则);采用数据画像与合成数据修正训练数据偏差;部署XAI工具(如偏见热力图)提升模型可解释性;跟踪全球监管动态(如《欧盟AI法案》),建立"风险沙盒"模拟极端场景;与合作伙伴签订明确的数据所有权、知识产权分配协议,避免法律纠纷。此外,企业还可通过"技术-法律-社会"协同治理体系,平衡创新与风险。

五、AI大模型赋能企业数字化转型的关键挑战与应对

尽管AI大模型为企业数字化转型带来了前所未有的机遇,但其落地过程中仍面临多重挑战,需要企业采取系统性应对策略。

数据治理挑战:数据敏感性与共享限制(如金融数据)、数据偏差风险(如历史数据中的群体偏好)、数据碎片化(如制造业ERP系统利用率低)等是主要障碍。应对策略包括:建立数据画像技术识别训练数据中的群体代表性偏差;通过过采样、欠采样或合成数据增强边缘群体的存在感;采用联邦学习、差分隐私等技术保护敏感信息;制定统一数据标准,打破部门间数据孤岛。例如,医渡科技通过RAG技术整合病历与知识库,提升临床试验数据质控;中国移动"万象耕耘"农业大模型通过多源数据微调构建起"云端大脑+田间神经"的智能体系,解决农业数据碎片化问题。更多》》

图片

图片

模型部署挑战:模型泛化能力不足、算力成本高(中小企业难以承担)、模型解释性缺失等是主要难点。应对策略包括:采用"大模型+小模型"融合架构,如浪潮智产大模型支持私有化部署,以大模型+小模型方式输出能力;选择轻量化部署方案,如网易伏羲工业大模型支持端侧部署,降低算力需求;建立模型管理体系和监控机制,定期进行训练和调优。例如,东莞AI大模型中心采用"算力即服务"模式,为中小制造企业提供全周期支持;卡奥斯COSMO-GPT通过百亿参数与4700多个机理模型结合,解决工业场景的复杂问题。

组织变革挑战:业务部门不支持、领导认知不足、员工变革抵抗等是主要障碍。应对策略包括:设立数字化委员会统筹战略;制定三位一体激励机制(KPI+OKR+微徽章)提升团队效率;开展系统性培训,如东软集团基于生成式AI布局人力资源战略;建立文化共识,如长安马自达推行"一把手"工程。例如,广发银行成立金融科技委员会统筹数据工作,统一业务与数据部门话语体系;中铁四局启动数智工程战略,搭建一体化数字应用平台,加强数字文化建设。

成本与ROI挑战:初始投入高、回报周期长、间接价值难以量化等是主要难点。应对策略包括:优先选择高频高价值场景进行落地验证,如京东物流智能仓储节省50%人力成本;采用云服务降低工程化成本,如阿里云PAI ModelGallery、华为云Flexus等平台提供开箱即用的AI工程化服务;建立多维度ROI评估模型(财务、市场、运营),如企业可采用RO I = C ∑ i = 1 n w i R i 的公式进行计算。例如,某区域性银行通过采购宇信AI一体机,3周内完成智能营销系统部署,ROI达自研模式3倍;天虹超市通过"百灵鸟AI"垂直大模型实现智能导购和AI试衣,服务效率、精度、温度全面提升。

六、总结与未来展望

展望2025年至2030年,AI大模型将从“工具化”迈向“智能化+产业化”深度融合的新阶段。随着技术架构持续演进、行业知识深度嵌入、生态体系日趋完善,AI大模型将成为企业数字化转型的核心基础设施和战略资产。

技术层面,多模态融合、端侧智能、小样本学习等能力将进一步提升,推动模型向更高效、更轻量、更精准的方向发展。RAG、联邦学习、强化学习与生成式AI的结合,将显著增强模型在垂直场景中的泛化能力和安全性。同时,新型架构如RetNet、Mamba等有望突破Transformer瓶颈,实现更低延迟、更高吞吐的推理效率。

产业层面,AI大模型将加速渗透到制造、金融、农业、医疗、能源、零售等关键行业,形成“基础模型+垂类模型+场景模型”的三级架构。未来,行业级平台将涌现,支持快速定制、低代码开发、自动化训练与部署,降低企业使用门槛。同时,数据要素市场化改革将为模型提供高质量语料支撑,推动构建“数据—模型—应用—反馈”的闭环生态。

治理层面,AI伦理、算法透明度、数据主权等问题将持续受到关注。各国政策法规趋于严格,企业需建立合规的AI治理体系,涵盖数据安全、模型审计、偏见检测、可解释性追踪等方面。开源社区、标准组织、行业联盟将发挥更大作用,推动技术共享与责任共担。

企业层面,建议把握三大趋势:一是“以业务为中心”,聚焦高频高价值场景,避免盲目追求模型规模;二是“以人才为驱动”,加快复合型团队建设,推动组织变革与文化重塑;三是“以生态为支撑”,加强与云服务商、垂类厂商、科研机构的合作,构建开放共赢的技术生态。


 

AI大模型不是一场技术秀,而是一场深刻的生产力革命。2025年,企业已进入“谁先落地、谁赢未来”的实战阶段。唯有坚持“战略引领、场景驱动、技术赋能、生态协同”,才能真正释放AI大模型的价值,实现从“数智化升级”到“智能体进化”的跨越,赢得新一轮竞争主动权。

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>好的,我现在需要解决用户在vxe-table中使用span-method合并行后出现的滚动错位问题。用户提到已经尝试合并单元格,但下拉后出现错位,并指出可能缺少scroll-y配置。我需要先理解vxe-table中span-method和虚拟滚动的关系。 首先,span-method用于合并单元格,而虚拟滚动(virtual scroll)是为了优化性能,只渲染可见区域的内容。这两者可能存在冲突,因为虚拟滚动动态计算元素位置,而合并单元格可能改变行高或列宽,导致计算错误。 用户提供的引用中提到需要设置scroll-y="{enabled: false}",这说明关闭虚拟滚动可能解决问题。但用户可能希望同时使用合并单元格和虚拟滚动,所以需要验证是否有其他解决方案,或者是否有配置遗漏。 查阅vxe-table的文档,发现虚拟滚动和行合并确实有兼容性问题。因为虚拟滚动依赖固定的行高,合并行后可能导致行高变化,而虚拟滚动无法动态调整,从而引发错位。官方建议在这种情况下禁用虚拟滚动,或者采用其他方式处理合并。 可能的解决方案包括: 1. 禁用虚拟滚动,直接设置scroll-y.enabled为false,但可能影响性能。 2. 调整span-method的实现,确保合并后的行不会影响虚拟滚动的计算,但可能较为复杂。 3. 使用其他方式实现类似效果,比如分组行,但功能可能不同。 根据用户反馈和文档,最直接的解决方法是关闭虚拟滚动。因此,建议用户修改配置,添加scroll-y="{enabled: false}",并测试是否解决问题。如果必须使用虚拟滚动,可能需要等待官方更新或寻找其他变通方法。</think>关于vxe-table中合并单元格与虚拟滚动冲突的解决方案如下: ### 问题分析 当使用$span-method$合并行时,虚拟滚动(virtual scroll)会因动态渲染机制导致行高计算错误,从而出现滚动条错位现象。这是由于: 1. 虚拟滚动默认根据固定行高预计算滚动位置[^1] 2. 合并单元格会改变实际渲染行数 3. 动态渲染区域与实际DOM结构存在差异 ### 解决方案 #### 方法一:禁用虚拟滚动(推荐) 在表格配置中添加: ```javascript <vxe-table :span-method="rowspanMethod" :scroll-y="{enabled: false}" > ``` 这会关闭纵向虚拟滚动功能,确保合并后的DOM结构完整渲染 #### 方法二:动态计算行高(高级) 通过自定义渲染逻辑实现: ```javascript { scrollY: { gt: 20, // 当数据量超过20行时启用 mode: 'wheel', oSize: 45 // 根据合并后的实际行高调整该值 } } ``` 需配合$row-span$属性动态计算合并后的行高 ### 验证步骤 1. 检查合并逻辑是否返回正确的`{ rowspan: N, colspan: 1 }` 2. 确保表格父容器有固定高度 3. 在$updated$生命周期中调用`refreshScroll()`方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值