[nlp]意图分类是怎么实现的

  • 今天很开心,明天见! ->再见

到这里,我们模型需要的数据就有了。可以很清晰的写出下面的代码:


list_sen=['今天这个菜真好吃!','嗨!今天天气不错!','今天很开心,明天见!']

需要的数据就有了,下一步是提取特征。

特征提取


特征的提取是为了方便进行分类计算,每一个特征都具备一定的权重,表明它的权值。通过特征的权值,就能够确定句子属于哪一个类别。这里我们将每一个字作为一个特征,1/(字出现的总次数)作为权值。

首先构造一个字典,key为字,value为频率:


dict_voc=dict()

for s in list_sen:

    for w in s:

        if w in dict_voc.keys():

            dict_voc[w]+=1

        else:

            dict_voc[w]=1

输出为:


{'这': 1.0, '嗨': 1.0, '好': 1.0, '气': 1.0, '真': 1.0, '错': 1.0, '不': 1.0, '个': 1.0, '心': 1.0, '天': 0.2, '菜': 1.0, '今': 0.3333333333333333, ',': 1.0, '!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值