- 今天很开心,明天见! ->再见
到这里,我们模型需要的数据就有了。可以很清晰的写出下面的代码:
list_sen=['今天这个菜真好吃!','嗨!今天天气不错!','今天很开心,明天见!']
需要的数据就有了,下一步是提取特征。
特征提取
特征的提取是为了方便进行分类计算,每一个特征都具备一定的权重,表明它的权值。通过特征的权值,就能够确定句子属于哪一个类别。这里我们将每一个字作为一个特征,1/(字出现的总次数)作为权值。
首先构造一个字典,key为字,value为频率:
dict_voc=dict()
for s in list_sen:
for w in s:
if w in dict_voc.keys():
dict_voc[w]+=1
else:
dict_voc[w]=1
输出为:
{'这': 1.0, '嗨': 1.0, '好': 1.0, '气': 1.0, '真': 1.0, '错': 1.0, '不': 1.0, '个': 1.0, '心': 1.0, '天': 0.2, '菜': 1.0, '今': 0.3333333333333333, ',': 1.0, '!