使用STM32制作智能安全监控

智能安全监控是一个包含图像处理、人脸识别、运动检测等功能的系统,可以实时监控特定区域,并在检测到异常情况时发出报警。在本例中,我们将使用STM32来实现一个简单的智能安全监控系统。

硬件准备:

  • STM32F系列开发板
  • OV2640摄像头传感器模块
  • 人体红外传感器模块
  • 无源蜂鸣器
  • LCD显示屏

软件准备:

  • STM32CubeIDE
  • 相关外设库文件
  1. 初始化 STM32 开发环境 首先,下载并安装 STM32CubeIDE,然后打开 STM32CubeIDE 并创建新的 STM32 项目。选择正确的 MCU 型号和外设,并为项目选择合适的名称和路径。

  2. 硬件连接 将 OV2640 摄像头、人体红外传感器和无源蜂鸣器连接到 STM32 开发板的合适引脚上。连接 LCD 显示屏以显示图像和警报信息。

  3. 配置摄像头 打开 CubeMX 软件,选择正确的 STM32F 系列芯片型号,然后配置相应的引脚功能和时钟。在 "Peripherals" 选项卡下选择 DCMI 和 I2C 外设,并分别为它们配置正确的时钟和引脚。在 "Configuration" 选项卡中,将接口配置为 CIF,宽度为 320,高度为 240,帧速率为 15FPS。生成代码并使用 STM32CubeIDE 打开。

  4. 初始化摄像头 在 main.c 文件中,通过 I2C 接口初始化 OV2640 摄像头。使用 DCMI 接口来捕获图像数据。在初始化完成后,可以使用 HAL_DCMI_Start_DMA() 函数开始捕获图像。

#include "ov2640.h"
#include "dcmi.h"

void MX_DCMI_Init(void)
{
  /* DCMI Initialization */
  hdcmi.Instance = DCMI;
  hdcmi.Init.SynchroMode = DCMI_SYNCHRO_HARDWARE;
  hdcmi.Init.PCKPolarity = DCMI_PCKPOLARITY_FALLING;
  hdcmi.Init.VSPolarity = DCMI_VSPOLARITY_LOW;
  hdcmi.Init.HSPolarity = DCMI_HSPOLARITY_LOW;
  hdcmi.Init.CaptureRate = DCMI_CR_ALL_FRAME;
  hdcmi.Init.ExtendedDataMode = DCMI_EXTEND_DATA_8B;
  hdcmi.Init.JPEGMode = DCMI_JPEG_DISABLE;
  hdcmi.Init.ByteSelectMode = DCMI_BSM_ALL;
  hdcmi.Init.ByteSelectStart = DCMI_OEBS_ODD;
  hdcmi.Init.LineSelectMode = DCMI_LSM_ALL;
  hdcmi.Init.LineSelectStart = DCMI_OELS_ODD;
  if (HAL_DCMI_Init(&hdcmi) != HAL_OK)
  {
    Error_Handler();
  }
}

void MX_I2C1_Init(void)
{
  /* I2C1 Initialization */
  hi2c1.Instance = I2C1;
  hi2c1.Init.Timing = 0x40912732;
  hi2c1.Init.OwnAddress1 = 0;
  hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c1.Init.OwnAddress2 = 0;
  hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  {
    Error_Handler();
  }
}

int main(void)
{
  HAL_Init();
  SystemClock_Config();
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_I2C1_Init();
  MX_DCMI_Init();

  /* Initialize OV2640 camera */
  if (OV2640_Init(&hi2c1) != 0)
  {
    Error_Handler();
  }

  /* Start DCMI capture */
  HAL_DCMI_Start_DMA(&hdcmi, DCMI_MODE_CONTINUOUS, (uint32_t)camera_frame_buffer, CAMERA_FRAME_SIZE/4);

  while (1)
  {
    /* Main loop */
  }
}

  1. 图像处理 在每次 DCMI 捕获图像后,使用图像处理算法进行人脸识别或运动检测。可以使用开源库例如OpenCV来进行图像处理。将处理后的结果显示在LCD显示屏上。
#include "image_processing.h"
#include "lcd.h"

void DCMI_FrameEventCallback(DCMI_HandleTypeDef *hdcmi)
{
  /* Image processing */
  image_processing(camera_frame_buffer);

  /* Display result on LCD */
  LCD_ShowImage(camera_frame_buffer);
}

  1. 运动检测 对于运动检测,我们可以使用简单的差分算法来检测灰度图像中的像素变化。本例中,我们将当前帧图像与上一帧图像进行差分,并计算差分图像中的非零像素数量来检测运动。
#include "image_processing.h"

#define WIDTH  320
#define HEIGHT 240

void image_processing(uint16_t* frame_buffer)
{
  static uint16_t previous_frame_buffer[WIDTH * HEIGHT];

  /* Copy current frame to previous frame */
  memcpy(previous_frame_buffer, frame_buffer, WIDTH * HEIGHT * sizeof(uint16_t));

  /* Calculate difference between current frame and previous frame */
  for (int i = 0; i < WIDTH * HEIGHT; i++)
  {
    int diff = abs(frame_buffer[i] - previous_frame_buffer[i]);
    if (diff > THRESHOLD)
    {
      // Motion detected
      // Trigger alarm or take action
    }
  }
}

  1. 人脸识别 对于人脸识别,我们可以使用 Haar 特征分类器进行人脸检测,并使用预训练的分类器模型文件进行识别。将检测到的人脸用矩形框出,并显示在 LCD 显示屏上。
#include "image_processing.h"

#define WIDTH  320
#define HEIGHT 240

void image_processing(uint16_t* frame_buffer)
{
  /* Convert RGB image to grayscale */
  uint8_t grayscale_image[WIDTH * HEIGHT];
  for (int i = 0; i < WIDTH * HEIGHT; i++)
  {
    uint16_t pixel = frame_buffer[i];
    uint8_t r = (pixel >> 11) & 0x1F;
    uint8_t g = (pixel >> 5) & 0x3F;
    uint8_t b = pixel & 0x1F;
    grayscale_image[i] = (uint8_t)(0.299 * r + 0.587 * g + 0.114 * b);
  }

  /* Detect faces */
  CvMemStorage* storage;
  CvHaarClassifierCascade* cascade;
  cascade = (CvHaarClassifierCascade*)cvLoad("haarcascade_frontalface_default.xml", 0, 0, 0);
  storage = cvCreateMemStorage(0);
  CvSeq* faces = cvHaarDetectObjects(cvCreateImageHeader(cvSize(WIDTH, HEIGHT), 8, 1),
                                     cascade, storage, 1.1, 3, CV_HAAR_DO_CANNY_PRUNING,
                                     cvSize(30, 30));

  /* Draw rectangles around detected faces */
  for (int i = 0; i < faces->total; i++)
  {
    CvRect* r = (CvRect*)cvGetSeqElem(faces, i);
    cvRectangle(cvCreateImageHeader(cvSize(WIDTH, HEIGHT), 8, 1),
                cvPoint(r->x, r->y), cvPoint(r->x + r->width, r->y + r->height),
                CV_RGB(0, 255, 0), 1, 8, 0);
  }

  /* Show the result on LCD */
  LCD_ShowImage(grayscale_image);
}

  1. 报警系统 当检测到异常情况,例如运动或未知人脸,我们可以触发警报。在本例中,我们使用无源蜂鸣器来发出警报声音。
void alarm(void)
{
  /* Activate buzzer */
  HAL_GPIO_WritePin(BUZZER_GPIO_Port, BUZZER_Pin, GPIO_PIN_SET);
  HAL_Delay

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值