智能安全监控是一个包含图像处理、人脸识别、运动检测等功能的系统,可以实时监控特定区域,并在检测到异常情况时发出报警。在本例中,我们将使用STM32来实现一个简单的智能安全监控系统。
硬件准备:
- STM32F系列开发板
- OV2640摄像头传感器模块
- 人体红外传感器模块
- 无源蜂鸣器
- LCD显示屏
软件准备:
- STM32CubeIDE
- 相关外设库文件
-
初始化 STM32 开发环境 首先,下载并安装 STM32CubeIDE,然后打开 STM32CubeIDE 并创建新的 STM32 项目。选择正确的 MCU 型号和外设,并为项目选择合适的名称和路径。
-
硬件连接 将 OV2640 摄像头、人体红外传感器和无源蜂鸣器连接到 STM32 开发板的合适引脚上。连接 LCD 显示屏以显示图像和警报信息。
-
配置摄像头 打开 CubeMX 软件,选择正确的 STM32F 系列芯片型号,然后配置相应的引脚功能和时钟。在 "Peripherals" 选项卡下选择 DCMI 和 I2C 外设,并分别为它们配置正确的时钟和引脚。在 "Configuration" 选项卡中,将接口配置为 CIF,宽度为 320,高度为 240,帧速率为 15FPS。生成代码并使用 STM32CubeIDE 打开。
-
初始化摄像头 在 main.c 文件中,通过 I2C 接口初始化 OV2640 摄像头。使用 DCMI 接口来捕获图像数据。在初始化完成后,可以使用 HAL_DCMI_Start_DMA() 函数开始捕获图像。
#include "ov2640.h"
#include "dcmi.h"
void MX_DCMI_Init(void)
{
/* DCMI Initialization */
hdcmi.Instance = DCMI;
hdcmi.Init.SynchroMode = DCMI_SYNCHRO_HARDWARE;
hdcmi.Init.PCKPolarity = DCMI_PCKPOLARITY_FALLING;
hdcmi.Init.VSPolarity = DCMI_VSPOLARITY_LOW;
hdcmi.Init.HSPolarity = DCMI_HSPOLARITY_LOW;
hdcmi.Init.CaptureRate = DCMI_CR_ALL_FRAME;
hdcmi.Init.ExtendedDataMode = DCMI_EXTEND_DATA_8B;
hdcmi.Init.JPEGMode = DCMI_JPEG_DISABLE;
hdcmi.Init.ByteSelectMode = DCMI_BSM_ALL;
hdcmi.Init.ByteSelectStart = DCMI_OEBS_ODD;
hdcmi.Init.LineSelectMode = DCMI_LSM_ALL;
hdcmi.Init.LineSelectStart = DCMI_OELS_ODD;
if (HAL_DCMI_Init(&hdcmi) != HAL_OK)
{
Error_Handler();
}
}
void MX_I2C1_Init(void)
{
/* I2C1 Initialization */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x40912732;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
}
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_DMA_Init();
MX_I2C1_Init();
MX_DCMI_Init();
/* Initialize OV2640 camera */
if (OV2640_Init(&hi2c1) != 0)
{
Error_Handler();
}
/* Start DCMI capture */
HAL_DCMI_Start_DMA(&hdcmi, DCMI_MODE_CONTINUOUS, (uint32_t)camera_frame_buffer, CAMERA_FRAME_SIZE/4);
while (1)
{
/* Main loop */
}
}
- 图像处理 在每次 DCMI 捕获图像后,使用图像处理算法进行人脸识别或运动检测。可以使用开源库例如OpenCV来进行图像处理。将处理后的结果显示在LCD显示屏上。
#include "image_processing.h"
#include "lcd.h"
void DCMI_FrameEventCallback(DCMI_HandleTypeDef *hdcmi)
{
/* Image processing */
image_processing(camera_frame_buffer);
/* Display result on LCD */
LCD_ShowImage(camera_frame_buffer);
}
- 运动检测 对于运动检测,我们可以使用简单的差分算法来检测灰度图像中的像素变化。本例中,我们将当前帧图像与上一帧图像进行差分,并计算差分图像中的非零像素数量来检测运动。
#include "image_processing.h"
#define WIDTH 320
#define HEIGHT 240
void image_processing(uint16_t* frame_buffer)
{
static uint16_t previous_frame_buffer[WIDTH * HEIGHT];
/* Copy current frame to previous frame */
memcpy(previous_frame_buffer, frame_buffer, WIDTH * HEIGHT * sizeof(uint16_t));
/* Calculate difference between current frame and previous frame */
for (int i = 0; i < WIDTH * HEIGHT; i++)
{
int diff = abs(frame_buffer[i] - previous_frame_buffer[i]);
if (diff > THRESHOLD)
{
// Motion detected
// Trigger alarm or take action
}
}
}
- 人脸识别 对于人脸识别,我们可以使用 Haar 特征分类器进行人脸检测,并使用预训练的分类器模型文件进行识别。将检测到的人脸用矩形框出,并显示在 LCD 显示屏上。
#include "image_processing.h"
#define WIDTH 320
#define HEIGHT 240
void image_processing(uint16_t* frame_buffer)
{
/* Convert RGB image to grayscale */
uint8_t grayscale_image[WIDTH * HEIGHT];
for (int i = 0; i < WIDTH * HEIGHT; i++)
{
uint16_t pixel = frame_buffer[i];
uint8_t r = (pixel >> 11) & 0x1F;
uint8_t g = (pixel >> 5) & 0x3F;
uint8_t b = pixel & 0x1F;
grayscale_image[i] = (uint8_t)(0.299 * r + 0.587 * g + 0.114 * b);
}
/* Detect faces */
CvMemStorage* storage;
CvHaarClassifierCascade* cascade;
cascade = (CvHaarClassifierCascade*)cvLoad("haarcascade_frontalface_default.xml", 0, 0, 0);
storage = cvCreateMemStorage(0);
CvSeq* faces = cvHaarDetectObjects(cvCreateImageHeader(cvSize(WIDTH, HEIGHT), 8, 1),
cascade, storage, 1.1, 3, CV_HAAR_DO_CANNY_PRUNING,
cvSize(30, 30));
/* Draw rectangles around detected faces */
for (int i = 0; i < faces->total; i++)
{
CvRect* r = (CvRect*)cvGetSeqElem(faces, i);
cvRectangle(cvCreateImageHeader(cvSize(WIDTH, HEIGHT), 8, 1),
cvPoint(r->x, r->y), cvPoint(r->x + r->width, r->y + r->height),
CV_RGB(0, 255, 0), 1, 8, 0);
}
/* Show the result on LCD */
LCD_ShowImage(grayscale_image);
}
- 报警系统 当检测到异常情况,例如运动或未知人脸,我们可以触发警报。在本例中,我们使用无源蜂鸣器来发出警报声音。
void alarm(void)
{
/* Activate buzzer */
HAL_GPIO_WritePin(BUZZER_GPIO_Port, BUZZER_Pin, GPIO_PIN_SET);
HAL_Delay