添加图片注释,不超过 140 字(可选)
更多AI前沿科技资讯,请关注我们:
closerAI-一个深入探索前沿人工智能与AIGC领域的资讯平台
【closerAI ComfyUI】FLUX生态进入秒出时代!最强加速器nunchaku实测:秒级出图+显存狂降3倍!已成生产力工具。
大家好,我是Jimmy。这期介绍一个爆炸的项目,FLUX模型我们都知道很吃显存,单单运行它文生图、图生图加上一些加速优化后像我8G显卡基本要1.5~2分钟左右,这还是没加LORA、fill、redux以及其它控制的情况下。如下加上控制,需要的时间就更久。虽然整理生图质量比其它模型好,但生成时间长是它的痛点。虽然有加速的方案,像teacha、sagettention等。但离作为生产力工具,在效率上还是有些欠缺。
现在,已经出现了一个新技术方向,4位扩散模型推理引擎nunchaku。最近推出0.2版本,已经将FLUX推进到秒级间输出的速度,并且生图质量与原生模型相差无几。
comfyUI-nunchaku介绍
nunchaku是由MIT Han Lab研发的4位扩散模型推理引擎,专为优化Stable Diffusion、Flux等生成式AI模型设计。其核心技术突破包括:
-
SVDQuant量化技术。通过低秩分解(Singular Value Decomposition)和核融合(Kernel Fusion),将模型权重与激活值压缩至4位,显存占用减少3.6倍(如16GB显存可运行原需50GB的Flux.1-dev模型)。解决传统4位量化图像模糊问题,LPIPS质量指标仅0.326(接近原版0.573),肉眼无差异。
-
多模态生态兼容。完美支持Flux模型、LoRA、ControlNet及多显卡架构(NVIDIA Ampere/Ada/A100)。文生图、ControlNet重绘、修复等,速度提升8.7倍。
-
硬件级优化。针对NVIDIA CUDA架构优化,支持FP16/FP8混合精度计算,16G显卡实现3秒生成(原版需111秒)
comfyui节点:https://github.com/mit-han-lab/ComfyUI-nunchaku
轮子地址:https://huggingface.co/mit