【closerAI ComfyUI】FLUX生态进入秒出时代!最强加速器nunchaku实测:秒级出图+显存狂降3倍!生产力工具

添加图片注释,不超过 140 字(可选)

更多AI前沿科技资讯,请关注我们:

closerAI-一个深入探索前沿人工智能与AIGC领域的资讯平台

【closerAI ComfyUI】FLUX生态进入秒出时代!最强加速器nunchaku实测:秒级出图+显存狂降3倍!已成生产力工具。

大家好,我是Jimmy。这期介绍一个爆炸的项目,FLUX模型我们都知道很吃显存,单单运行它文生图、图生图加上一些加速优化后像我8G显卡基本要1.5~2分钟左右,这还是没加LORA、fill、redux以及其它控制的情况下。如下加上控制,需要的时间就更久。虽然整理生图质量比其它模型好,但生成时间长是它的痛点。虽然有加速的方案,像teacha、sagettention等。但离作为生产力工具,在效率上还是有些欠缺。

现在,已经出现了一个新技术方向,4位扩散模型推理引擎nunchaku。最近推出0.2版本,已经将FLUX推进到秒级间输出的速度,并且生图质量与原生模型相差无几。

comfyUI-nunchaku介绍

nunchaku是由MIT Han Lab研发的4位扩散模型推理引擎,专为优化Stable Diffusion、Flux等生成式AI模型设计。其核心技术突破包括:

  1. SVDQuant量化技术。通过低秩分解(Singular Value Decomposition)和核融合(Kernel Fusion),将模型权重与激活值压缩至4位,显存占用减少3.6倍(如16GB显存可运行原需50GB的Flux.1-dev模型)。解决传统4位量化图像模糊问题,LPIPS质量指标仅0.326(接近原版0.573),肉眼无差异。

  2. 多模态生态兼容。完美支持Flux模型、LoRA、ControlNet及多显卡架构(NVIDIA Ampere/Ada/A100)。文生图、ControlNet重绘、修复等,速度提升8.7倍。

  3. 硬件级优化。针对NVIDIA CUDA架构优化,支持FP16/FP8混合精度计算,16G显卡实现3秒生成(原版需111秒)

comfyui节点:https://github.com/mit-han-lab/ComfyUI-nunchaku

轮子地址:https://huggingface.co/mit

### ComfyUI Flux 组合概述 ComfyUI Flux 是一种基于黑森林实验室(Black Forest Labs)开发的 FLUX.1 模型与 ComfyUI 平台相结合的技术解决方案。该组合旨在为用户提供强大的像生成能力和高效的处理流程。 #### 版本说明 FLUX.1 提供三个不同版本: - **FLUX.1-pro**:最高别的性能表现,支持最先进像生成功能以及顶提示词解析能力。此版本仅通过官方 API 访问并提供企业定制服务[^4]。 - **FLUX.1-dev**:从 FLUX.1-pro 中提取而来的开源版,具备相似质量和效率特性,适用于研究和技术探索场景。需要注意的是,尽管其功能强大,但不允许用于商业用途。 - **FLUX.1-schnell**:针对本地开发和个人应用优化过的快速运行模式,在 Apache 2.0 协议下开放源码发布。相比其他两个版本而言,它拥有更快的速度和更低资源消耗特点。 对于大多数个人开发者来说,推荐使用 FLUX.1-dev 或者 FLUX.1-schnell 进行实验和发展工作。 ### 安装配置指南 为了安装和配置 ComfyUIFLUX.1 的集成环境,请按照如下操作执行: 下载所需文件: ```bash wget http://file.s3/damodel-openfile/FLUX.1/FLUX.1-dev.tar tar -xf FLUX.1-dev.tar -C /path/to/ComfyUI/models/ ``` 确保将解压后的 `flux1-dev.safetensors` 文件放置于指定路径 `/path/to/ComfyUI/models/unet/` 下以便后续调用[^2]。 另外还需要获取额外的支持库来增强系统的兼容性和扩展性,比如 bitsandbytes 插件可以这样获得: ```bash git clone https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4.git cd ComfyUI_bitsandbytes_NF4 pip install . ``` 完成上述步骤之后就可以启动应用程序了。 ### 使用实例展示 下面给一段简单的 Python 脚本来演示如何利用 ComfyUI 结合 FLUX.1 实现基本的任务处理逻辑: ```python from comfyui import load_model, generate_image model_path = "/path/to/ComfyUI/models/unet/flux1-dev.safetensors" loaded_model = load_model(model_path) prompt_text = "A beautiful sunset over mountains." generated_img = generate_image(loaded_model, prompt=prompt_text) ``` 这段代码展示了加载预训练好的 FLUX.1 模型并通过给定的文字描述 (`prompt`) 来创建一张新的片的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

closerAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值