昇思25天学习打卡营第1天|如何使用昇思学习

昇思MindSpore作为全场景AI框架,所支持的有端(手机与IOT设备)、边(基站与路由设备)、云(服务器)场景的不同系列硬件,包括昇腾系列产品、英伟达NVIDIA系列产品、Arm系列的高通骁龙、华为麒麟的芯片等系列产品。

左边蓝色方框的是MindSpore主体框架,主要提供神经网络在训练、验证过程中相关的基础API功能,另外还会默认提供自动微分、自动并行等功能。

蓝色方框往下是MindSpore Data模块,可以利用该模块进行数据预处理,包括数据采样、数据迭代、数据格式转换等不同的数据操作。在训练的过程会遇到很多调试调优的问题,因此有MindSpore Insight模块对loss曲线、算子执行情况、权重参数变量等调试调优相关的数据进行可视化,方便用户在训练过程中进行调试调优。

AI安全最简单的场景就是从攻防的视角来看,例如,攻击者在训练阶段掺入恶意数据,影响AI模型推理能力,于是MindSpore推出了MindSpore Armour模块,为MindSpore提供AI安全机制。

蓝色方框往上的内容跟算法开发相关的用户更加贴近,包括存放大量的AI算法模型库ModelZoo,提供面向不同领域的开发工具套件MindSpore DevKit,另外还有高阶拓展库MindSpore Extend,这里面值得一提的就是MindSpore Extend中的科学计算套件MindSciences,MindSpore首次探索将科学计算与深度学习结合,将数值计算与深度学习相结合,通过深度学习来支持电磁仿真、药物分子仿真等等。

神经网络模型训练完后,可以导出模型或者加载存放在MindSpore Hub中已经训练好的模型。接着有MindIR提供端云统一的IR格式,通过统一IR定义了网络的逻辑结构和算子的属性,将MindIR格式的模型文件 与硬件平台解耦,实现一次训练多次部署。因此如图所示,通过IR把模型导出到不同的模块执行推理。


快速入门

通过MindSpore的API来快速实现一个简单的深度学习模型。若想要深入了解MindSpore的使用方法。

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

处理数据集

MindSpore提供基于Pipeline的数据引擎,通过数据集(Dataset)和数据变换(Transforms)实现高效的数据预处理,使用Mnist数据集,自动下载完成后,使用mindspore.dataset提供的数据变换进行预处理。

本章节中的示例代码依赖download,可使用命令pip install download安装。如本文档以Notebook运行时,完成安装后需要重启kernel才能执行后续代码。

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)

file_sizes: 100%|██████████████████████████| 10.8M/10.8M [00:01<00:00, 6.73MB/s]
Extracting zip file…
Successfully downloaded / unzipped to ./

MNIST数据集目录结构如下:

MNIST_Data
└── train
    ├── train-images-idx3-ubyte (60000个训练图片)
    ├── train-labels-idx1-ubyte (60000个训练标签)
└── test
    ├── t10k-images-idx3-ubyte (10000个测试图片)
    ├── t10k-labels-idx1-ubyte (10000个测试标签)

数据下载完成后,获得数据集对象。

train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')

打印数据集中包含的数据列名,用于dataset的预处理。

print(train_dataset.get_col_names())

[‘image’, ‘label’]

MindSpore的dataset使用数据处理流水线(Data Processing Pipeline),需指定map、batch、shuffle等操作。这里我们使用map对图像数据及标签进行变换处理,将输入的图像缩放为1/255,根据均值0.1307和标准差值0.3081进行归一化处理,然后将处理好的数据集打包为大小为64的batch。

def datapipe(dataset, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset
# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)
test_dataset = datapipe(test_dataset, 64)

可使用create_tuple_iterator 或create_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatype。

for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break
Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32
for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break
Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32

网络构建

mindspore.nn类是构建所有网络的基类,也是网络的基本单元。当用户需要自定义网络时,可以继承nn.Cell类,并重写__init__方法和construct方法。__init__包含所有网络层的定义,construct中包含数据(Tensor)的变换过程。

# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
print(model)
Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
    >

模型训练

在模型训练中,一个完整的训练过程(step)需要实现以下三步:

  • 正向计算:模型预测结果(logits),并与正确标签(label)求预测损失(loss)。
  • 反向传播:利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
  • 参数优化:将梯度更新到参数上。

MindSpore使用函数式自动微分机制,因此针对上述步骤需要实现:

  • 定义正向计算函数。
  • 使用value_and_grad通过函数变换获得梯度计算函数。
  • 定义训练函数,使用set_train设置为训练模式,执行正向计算、反向传播和参数优化。
# Instantiate loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)

# 1. Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# 3. Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

除训练外,我们定义测试函数,用来评估模型的性能。

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看到loss在不断下降,Accuracy在不断提高。

epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")

Epoch 1

loss: 2.302088 [ 0/938]
loss: 2.290692 [100/938]
loss: 2.266338 [200/938]
loss: 2.205240 [300/938]
loss: 1.907198 [400/938]
loss: 1.455603 [500/938]
loss: 0.861103 [600/938]
loss: 0.767219 [700/938]
loss: 0.422253 [800/938]
loss: 0.513922 [900/938]
Test:
Accuracy: 83.8%, Avg loss: 0.529534

Epoch 2

loss: 0.580867 [ 0/938]
loss: 0.479347 [100/938]
loss: 0.677991 [200/938]
loss: 0.550141 [300/938]
loss: 0.226565 [400/938]
loss: 0.314738 [500/938]
loss: 0.298739 [600/938]
loss: 0.459540 [700/938]
loss: 0.332978 [800/938]
loss: 0.406709 [900/938]
Test:
Accuracy: 90.2%, Avg loss: 0.334828

Epoch 3

loss: 0.461890 [ 0/938]
loss: 0.242303 [100/938]
loss: 0.281414 [200/938]
loss: 0.207835 [300/938]
loss: 0.206000 [400/938]
loss: 0.409646 [500/938]
loss: 0.193608 [600/938]
loss: 0.217575 [700/938]
loss: 0.212817 [800/938]
loss: 0.202862 [900/938]
Test:
Accuracy: 91.9%, Avg loss: 0.280962

在这里插入图片描述

保存模型

模型训练完成后,需要将其参数进行保存。

# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")
Saved Model to model.ckpt

加载模型

加载保存的权重分为两步:

  • 重新实例化模型对象,构造模型。
  • 加载模型参数,并将其加载至模型上。
# Instantiate a random initialized model
model = Network()
# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)
[]

param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功,加载后的模型可以直接用于预测推理。

model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break
Predicted: "[3 9 6 1 6 7 4 5 2 2]", Actual: "[3 9 6 1 6 7 4 5 2 2]"

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值