win 环境 conda 高效配置 unsloth

官方链接: https://docs.unsloth.ai/get-started/installing-±updating
在这里插入图片描述

本文使用 conda 分步骤安装

1. 创建虚拟环境

conda create --name unsloth_env python=3.11

2. pytorch 2.4 cuda 12.1

conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.1 -c pytorch -c nvidia

3. xformers

pip install xformers==0.0.27.post2

4. unsloth

pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install --no-deps trl peft accelerate bitsandbytes

注意事项

1. 也可以选择全部用 pip 命令安装, 但在虚拟环境里面可能会有其他问题 处理起来麻烦

2. torch 和 cuda 的版本号一定要对应上 如:pytorch 2.4 cuda 12.1

3. xformers 不要直接安装 可能会自动升级 torch 版本;先用dry run 看看 torch 有没有被升级

# 不推荐
pip install xformers
pip install xformers==0.0.27

# 推荐
pip install xformers==0.0.27.post2

4. unsloth 安装可能遇到443问题 届时需要设置 git 代理 记得改后查看一下

git config --global http.proxy http://127.0.0.1:你的端口
git config --global https.proxy http://127.0.0.1:你的端口

git config --global -l
### 安装配置Unsloth于Mac OS #### 准备工作 为了确保顺利安装 Unsloth,在开始之前需确认 Mac 设备满足基本条件。设备应具备足够的硬件资源,例如大容量高带宽的统一内存(比如 X 上的 @awnihannun 使用了两台 192 GB 内存的 Mac Studio 运行特定版本的应用程序)[^1]。此外,操作系统应当为最新版的 macOS,并且能够支持64位应用程序的运行环境[^2]。 #### 下载与安装 前往 Unsloth 的官方页面获取适用于 macOS 平台的安装包。通常情况下,这会是一个 `.dmg` 文件形式分发。双击该文件并按照屏幕上的指示完成软件的安装过程。 #### 配置服务 一旦安装成功之后,可能涉及到一些额外的服务配置来优化性能表现。对于某些依赖项而言,可以利用命令行工具来进行管理: ```bash apt-get install systemctl systemctl status unsloth ``` 上述命令仅作为示例展示;请注意实际操作时需要依据具体的指导文档调整命令中的服务名称和服务管理方式[^3]。 针对特定功能需求还可以进一步自定义设置,如启用高级特性或修改默认行为等。例如通过设定环境变量的方式开启特殊模式或是改变缓存策略以适应不同的应用场景: ```bash Environment="UNSLOTH_FEATURE_FLAG=true" Environment="UNSLOTH_CACHE_SIZE=8g" ``` 以上代码片段同样基于假设情况编写,请参照产品手册了解确切的支持选项及其对应的语法结构[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值