Unsloth 项目安装和配置指南
unsloth 5X faster 60% less memory QLoRA finetuning 项目地址: https://gitcode.com/gh_mirrors/un/unsloth
1. 项目基础介绍和主要编程语言
项目基础介绍
Unsloth 是一个开源项目,旨在加速大型语言模型(LLMs)如 Llama 3.1、Mistral、Phi 和 Gemma 的微调过程。该项目通过优化算法和内存使用,使得微调过程比传统方法快 2-5 倍,并且内存使用减少了 80%。Unsloth 的目标是让微调 LLMs 变得更加高效和易于访问。
主要编程语言
Unsloth 项目主要使用 Python 编程语言。Python 是一种广泛使用的高级编程语言,特别适合用于数据科学、机器学习和人工智能领域。
2. 项目使用的关键技术和框架
关键技术和框架
- PyTorch: 一个开源的机器学习框架,广泛用于深度学习模型的开发和训练。
- Triton: 由 OpenAI 开发的一种语言,用于编写高效的 GPU 内核。
- bitsandbytes: 一个库,支持 4 位和 16 位 QLoRA/LoRA 微调。
- xformers: 一个用于加速 Transformer 模型训练的库。
- CUDA: NVIDIA 的并行计算平台和 API,用于加速 GPU 上的计算任务。
3. 项目安装和配置的准备工作和详细安装步骤
准备工作
在开始安装之前,请确保您的系统满足以下要求:
- 操作系统:Linux 或 Windows(通过 WSL)
- Python 版本:3.10 或更高版本
- CUDA 版本:11.8 或 12.1(取决于您的 GPU)
- GPU:支持 CUDA 的 NVIDIA GPU(推荐 CUDA Capability 7.0 及以上)
详细安装步骤
步骤 1:安装 Conda(可选)
如果您没有 Conda,可以使用以下命令安装 Miniconda:
mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
~/miniconda3/bin/conda init zsh
步骤 2:创建 Conda 环境并安装依赖
conda create --name unsloth_env \
python=3.11 \
pytorch-cuda=12.1 \
pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers \
-y
conda activate unsloth_env
步骤 3:安装 Unsloth
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install --no-deps trl peft accelerate bitsandbytes
步骤 4:验证安装
确保所有依赖项都已正确安装:
python -m torch.utils.collect_env
python -m xformers.info
python -m bitsandbytes
安装完成
至此,Unsloth 项目已经成功安装并配置完成。您现在可以开始使用 Unsloth 进行 LLMs 的微调工作了。
通过以上步骤,您可以轻松地在您的系统上安装和配置 Unsloth 项目。希望这篇指南对您有所帮助!
unsloth 5X faster 60% less memory QLoRA finetuning 项目地址: https://gitcode.com/gh_mirrors/un/unsloth