Unsloth 项目安装和配置指南

Unsloth 项目安装和配置指南

unsloth 5X faster 60% less memory QLoRA finetuning unsloth 项目地址: https://gitcode.com/gh_mirrors/un/unsloth

1. 项目基础介绍和主要编程语言

项目基础介绍

Unsloth 是一个开源项目,旨在加速大型语言模型(LLMs)如 Llama 3.1、Mistral、Phi 和 Gemma 的微调过程。该项目通过优化算法和内存使用,使得微调过程比传统方法快 2-5 倍,并且内存使用减少了 80%。Unsloth 的目标是让微调 LLMs 变得更加高效和易于访问。

主要编程语言

Unsloth 项目主要使用 Python 编程语言。Python 是一种广泛使用的高级编程语言,特别适合用于数据科学、机器学习和人工智能领域。

2. 项目使用的关键技术和框架

关键技术和框架

  • PyTorch: 一个开源的机器学习框架,广泛用于深度学习模型的开发和训练。
  • Triton: 由 OpenAI 开发的一种语言,用于编写高效的 GPU 内核。
  • bitsandbytes: 一个库,支持 4 位和 16 位 QLoRA/LoRA 微调。
  • xformers: 一个用于加速 Transformer 模型训练的库。
  • CUDA: NVIDIA 的并行计算平台和 API,用于加速 GPU 上的计算任务。

3. 项目安装和配置的准备工作和详细安装步骤

准备工作

在开始安装之前,请确保您的系统满足以下要求:

  • 操作系统:Linux 或 Windows(通过 WSL)
  • Python 版本:3.10 或更高版本
  • CUDA 版本:11.8 或 12.1(取决于您的 GPU)
  • GPU:支持 CUDA 的 NVIDIA GPU(推荐 CUDA Capability 7.0 及以上)

详细安装步骤

步骤 1:安装 Conda(可选)

如果您没有 Conda,可以使用以下命令安装 Miniconda:

mkdir -p ~/miniconda3
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh
~/miniconda3/bin/conda init bash
~/miniconda3/bin/conda init zsh
步骤 2:创建 Conda 环境并安装依赖
conda create --name unsloth_env \
    python=3.11 \
    pytorch-cuda=12.1 \
    pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers \
    -y
conda activate unsloth_env
步骤 3:安装 Unsloth
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
pip install --no-deps trl peft accelerate bitsandbytes
步骤 4:验证安装

确保所有依赖项都已正确安装:

python -m torch.utils.collect_env
python -m xformers.info
python -m bitsandbytes

安装完成

至此,Unsloth 项目已经成功安装并配置完成。您现在可以开始使用 Unsloth 进行 LLMs 的微调工作了。


通过以上步骤,您可以轻松地在您的系统上安装和配置 Unsloth 项目。希望这篇指南对您有所帮助!

unsloth 5X faster 60% less memory QLoRA finetuning unsloth 项目地址: https://gitcode.com/gh_mirrors/un/unsloth

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云琰峻Honor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值