回归预测|基于北方苍鹰优化极端梯度提升树的数据回归预测Matlab程序NGO-XGBoost多特征输入单输出

回归预测|基于北方苍鹰优化极端梯度提升树的数据回归预测Matlab程序NGO-XGBoost多特征输入单输出


前言

回归预测|基于北方苍鹰优化极端梯度提升树的数据回归预测Matlab程序NGO-XGBoost多特征输入单输出

一、NGO-XGBoost模型

NGO(Northwestern Grape Optimization)是北方苍鹰优化的缩写,一种用于优化问题的算法。XGBoost(Extreme Gradient Boosting)则是一种集成学习方法中的梯度提升决策树算法,广泛应用于回归、分类等任务。结合NGO优化算法和XGBoost进行回归预测可以带来更高的精度和效率。

下面是NGO-XGBoost多特征输入单输出回归预测的详细原理和流程:

1. 理解XGBoost

XGBoost是一种高效的梯度提升决策树算法,其工作流程如下:

  • 基础学习器:XGBoost的核心是决策树,每个树都是一个基础学习器,用于拟合训练数据。
  • 梯度提升:XGBoost通过逐步训练多棵树来优化损失函数,每一步都在最小化预测误差。
  • 正则化:XGBoost使用L1和L2正则化来防止模型过拟合。
  • 特征选择:算法会自动选择对模型预测最有用的特征。

2. 理解NGO优化算法

NGO(Northwestern Grape Optimization)是一种用于解决优化问题的启发式算法,基于苍鹰的捕猎行为,模拟自然界的优化过程。其特点包括:

  • 全局搜索能力:NGO具有很强的全局搜索能力,适用于处理复杂的优化问题。
  • 收敛性:NGO在多次迭代中逐步收敛,找到优化目标的最优解。

3. NGO-XGBoost结合的流程

结合NGO与XGBoost的优化流程一般包括以下几个步骤:

3.1. 数据准备
  • 收集数据:获取包含多特征的训练数据集和对应的目标值。
  • 数据预处理:对数据进行清洗、归一化、特征工程等处理,以提高模型的性能。
3.2. 构建XGBoost模型
  • 定义模型:设定XGBoost的超参数,如学习率、树的深度、子样本比率等。
  • 训练模型:使用训练数据集对XGBoost模型进行训练,调整模型参数以最小化预测误差。
3.3. 应用NGO优化
  • 参数优化:使用NGO优化算法来优化XGBoost的超参数。NGO算法会通过模拟苍鹰的行为在参数空间中搜索,以找到最佳的超参数组合。
  • 优化流程
    • 初始化:随机生成一组初始的超参数。
    • 评估:使用XGBoost模型和当前的超参数组合进行训练,并评估模型的性能。
    • 更新:根据NGO算法的更新规则调整超参数的选择。
    • 迭代:重复评估和更新过程,直到找到最优的超参数组合。
3.4. 模型验证
  • 交叉验证:使用交叉验证方法评估优化后的XGBoost模型的性能,以确保模型的泛化能力。
  • 调整:根据验证结果进一步调整模型或超参数。
3.5. 预测
  • 最终训练:使用优化后的超参数对整个训练数据集进行训练。
  • 预测输出:使用训练好的模型对新数据进行预测,输出回归结果。

4. 总结

结合NGO优化算法与XGBoost,可以有效地提高回归预测任务的性能。NGO优化算法通过智能地调整XGBoost的超参数来提高模型的精度,而XGBoost则通过其强大的梯度提升能力来提高回归预测的准确性。两者的结合利用了NGO的全局优化能力和XGBoost的强大建模能力,适用于各种回归预测应用。

二、实验结果

NGO-XGBoost
在这里插入图片描述
XGBoost
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');

%%  数据分析
num_size = 0.7;                             
outdim = 1;                        
num_samples = size(res, 1);         
res = res(randperm(num_samples), :);        
num_train_s = round(num_size * num_samples); 
f_ = size(res, 2) - outdim;                

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据转置
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

四、代码获取

私信即可 30米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

  • 11
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
北方苍鹰NGO-BP)算法是一种结合了自组织映射(Self-Organizing Map,SOM)技术和改进的误差反向传播(Back Propagation,BP)神经网络技术的故障识别方法。其优化过程主要有以下几个步骤: 1. **预处理和特征提取**:首先对原始故障数据进行预处理,如归一化、降噪等,然后提取出关键特征,减少输入维度,提高算法效率。 2. **初始化NGO-BP网络**:SOM网络作为预训练层,用于发现数据集中的潜在结构。它通过竞争学习机制形成聚类,每个神经元代表一个数据空间中的模式。 3. **SOM训练**:利用原始数据对SOM网络进行训练,使得相邻节点之间的数据相似度高。这个阶段有助于将复杂的数据分布映射到低维空间。 4. **NGO-BP网络构建**:将训练好的SOM映射作为输入层,连接到一个传统的BP神经网络,作为输出层用于分类决策。SOM负责降低噪音和保持局部一致性,BP负责全局调整权重以优化分类精度。 5. **联合训练**:将两者结合起来,先通过SOM确定初始权值,再用BP进行微调。SOM部分固定不变,只更新BP网络的隐藏层权重,以适应从SOM得到的简化的输入特征。 6. **故障识别**:新的输入数据通过预训练的SOM层,再通过BP网络进行分类,输出对应故障类别。 流程总结就是:预处理数据 -> SOM网络初步划分 -> NGO-BP网络结构整合 -> 合成训练与优化 -> 新数据输入进行故障识别。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值