改进的小龙虾优化算法(Modifed crayfsh optimization algorithm,MCOA)

前言

改进小龙虾优化算法(Modifed crayfsh optimization algorithm,MCOA)是2024年4月提出的一种优化算法,该算法根据小龙虾“喜欢生活在新鲜流动的水”的生活习性引入环境更新机制,通过水质因子引导小龙虾寻找更优水生环境。小龙虾溯水而上寻找更优质水生环境的行为一定程度上使小龙虾的繁衍得以延续,扩大小龙虾的搜索范围和探索效率,有效的增强算法的全局寻优能力。原始的小龙虾优化算法见文章,本文是对COA的一种改进。

文章由本人与 贾鹤鸣教授合作完成,如有疑问,本人力所能及解答,感谢各位观看。

一、改进小龙虾优化算法

小龙虾多以植物为食,喜清新的水质。通过小龙虾的自然行为,强调了小龙虾对旺盛的摄食、快速生长、低发病率的偏好,以及在水流快、水生植物适宜、食物丰富的环境中茁壮成长的能力。当小龙虾感知到高温、干燥或食物匮乏等不利条件时,它们利用自适应流动因子和第二、第三腿的感官信息来判断水流方向。然后,它们逆流而上,寻找富含氧气、有充足食物维持生命的环境。基于这些小龙虾的行为,提出了一种改进的小龙虾优化算法(Modified crayfish Optimization Algorithm, MCOA)。该算法利用小龙虾的观察策略来增强其优化技术,使其在处理复杂问题空间时更具适应性和效率,反映了小龙虾适应多样化水生环境的能力。下面是改进小龙虾优化算法的具体介绍。

1.1环境更新机制

在环境更新机制中,引入一个水质因子V,表示当前位置水生环境的质量。水质因子V是一个从0到5的随机数,小龙虾通过第二、三足的感知力r来感知当前水生环境的质量,小龙虾通过感知后判断当前生活环境能否继续生存,自主选择是否对当前位置进行位置更新。位置更新计算公式如下:
X n e w = X 2 + ( X 1 − X i , j ) × cos ⁡ ( θ ) × B × V × r a n d + X 1 × sin ⁡ ( θ ) × B × r a n d (1) X_{new}=X_2+(X_1-X_{i,j})\times\cos(\theta)\times B\times V\times rand+X_1\times\sin(\theta)\times B\times rand\tag{1} Xnew=X2+(X1Xi,j)×cos(θ)×B×V×rand+X1

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值