【智能算法应用】基于麻雀搜索算法的二维最大熵图像阈值分割


1.算法原理

【智能算法】麻雀搜索算法(SSA)原理及实现

2.数学模型

最大熵法是由 Kapur 于 1985 年所提出的, 该方法的阈值选取标准取决于图像中最大化分
割的目标区域和背景区域的总熵
, 而图像中的熵能够反映图像的平均信息量, 表示图像灰度
分布的聚集特征。

二维熵图像分割方法不仅侧重于考虑每个像素的灰度值,还细致地考察了像素邻域内的灰度分布,从而为图像分割提供了更丰富的信息。通过设置灰度阈值 t 和邻域阈值 s,图像被细分为四个区域:两个主要区域(目标和背景)位于阈值对角线的两侧,而垂直于对角线的两个区域主要包含边缘信息和噪声。

在这里插入图片描述
将图像中一个像素点及其周围3×3 范围的区域作为邻域, 来计算该像素点的邻域灰度均值:
P i j = n i j M × N (1) P_{ij}=\frac{n_{ij}}{M\times N}\tag{1} Pij=M×Nnij(1)
其中 Pij表示该像素点灰度值为 i 并且其邻域灰度平均值为 j 时的概率, nij 表示满足当前像素
点灰度值为 i 且其邻域灰度平均值为 j 时的像素点个数, M×N 表示图像的像素大小。
目标区域和背景区域的累积概率:
w 0 ( t , s ) = ∑ i = 0 t − 1 ∑ j = 0 s − 1 p i j w b ( t , s ) = ∑ i = t L − 1 ∑ j = s L − 1 p i j (2) w_0(t,s)=\sum_{i=0}^{t-1}\sum_{j=0}^{s-1}p_{ij}\\w_b(t,s)=\sum_{i=t}^{L-1}\sum_{j=s}^{L-1}p_{ij}\tag{2} w0(t,s)=i=0t1j=0s1pijwb(t,s)=i=tL1j=sL1pij(2)
目标区域和背景区域的熵:
H o ( t , s ) = − ∑ i = 0 t − 1 ∑ j = 0 s − 1 P i j ln ⁡ ( P i j w 0 ( t , s ) ) H b ( t , s ) = − ∑ i = t L − 1 ∑ j = s L − 1 P i j ln ⁡ ( P i j w b ( t , s ) ) (3) H_o(t,s)=-\sum_{i=0}^{t-1}\sum_{j=0}^{s-1}P_{ij}\ln\left(\frac{P_{ij}}{w_0(t,s)}\right)\\H_b(t,s)=-\sum_{i=t}^{L-1}\sum_{j=s}^{L-1}P_{ij}\ln\left(\frac{P_{ij}}{w_b(t,s)}\right)\tag{3} Ho(t,s)=i=0t1j=0s1Pijln(w0(t,s)Pij)Hb(t,s)=i=tL1j=sL1Pijln(wb(t,s)Pij)(3)
二维最大熵 H:
H ( t , s ) = H 0 ( t , s ) + H b ( t , s ) (4) H(t,s)=H_0(t,s)+H_b(t,s)\tag{4} H(t,s)=H0(t,s)+Hb(t,s)(4)
熵值越大代表信息量越大:
f u n { t ∗ , s ∗ } = arg ⁡ max ⁡ ( 0 ≤ t ≤ L − 1 , 0 ≤ s ≤ L − 1 ) { H ( t , s ) } (5) fun\{t^*,s^*\}=\arg\max(0\leq t\leq L-1,0\leq s\leq L-1)\{H(t,s)\}\tag{5} fun{t,s}=argmax(0tL1,0sL1){H(t,s)}(5)
通常智能算法是求解最小化问题,因此适应度函数定义为:
f i t n e s s = − f u n { t ∗ , s ∗ } (6) fitness = -fun\{t^*,s^*\}\tag{6} fitness=fun{t,s}(6)

3.结果展示

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] 袁成志.基于改进群体智能优化算法的图像处理应用研究[D].南京邮电大学,2023.

5.代码获取

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值