【AI大模型应用开发】【LangChain系列】1. 全面学习LangChain输入输出I/O模块:理论介绍+实战示例+细节注释

上文我们介绍过LangChain的基本框架和其中包含的主要模块。从今天开始,我们开始学习各个模块,深入了解,同时进行相应实战练习。

本文学习 LangChain 中的 模型 I/O 封装模块。

0. 模块介绍

任何AI大模型应用程序的核心元素都是大模型。LangChain提供了与各种大模型接口进行交互的封装。

在这里插入图片描述 这张图生动地展现了LangChain对于I/O(输入输出)的封装。

  • 首先是 Format 部分,这部分的作用是组装用户输入和Prompt模板,作为大模型的输入。
  • 然后是 Predict 部分,这部分就是调用大模型接口获得结果
  • 最后是 Parse 部分,这部分的作用是对大模型的结果进行解析,将大模型的输出转换到要求的格式(如json)上,或者对输出进行校验等等

1. Format部分:Prompt模板封装

1.1 PromptTemplate:创建一个字符串类型的Prompt

PromptTemplate 可以在模板中自定义变量

python代码解读复制代码import os
# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())

from langchain_openai import ChatOpenAI
 
llm = ChatOpenAI() # 默认是gpt-3.5-turbo

prompt_template = """
我的名字叫【{name}】,我的个人介绍是【{description}】。
请根据我的名字和介绍,帮我想一段有吸引力的自我介绍的句子,以此来吸引读者关注和点赞我的账号。
"""

from langchain.prompts import PromptTemplate
template = PromptTemplate.from_template(prompt_template)
print(template.input_variables)
prompt = template.format(name='同学小张', description='热爱AI,持续学习,持续干货输出')
print(prompt)
response = llm.invoke(prompt)
print(response.content)

在这里插入图片描述

1.2 ChatPromptTemplate:创建一个Prompt的Message数组

在这里插入图片描述

python代码解读复制代码...... 省略llm的引入代码,可参考前文 ......

from langchain.prompts import ChatPromptTemplate
from langchain.prompts.chat import SystemMessagePromptTemplate, HumanMessagePromptTemplate
template = ChatPromptTemplate.from_messages(
    [
        SystemMessagePromptTemplate.from_template("你是【{name}】的个人助手,你需要根据用户输入,来替用户生成一段有吸引力的自我介绍的句子,以此来吸引读者关注和点赞用户的账号。"),
        HumanMessagePromptTemplate.from_template("{description}"),
    ]
)
prompt = template.format(name="同学小张", description="热爱AI,持续学习,持续干货输出")

print(prompt)
response = llm.invoke(prompt)
print(response.content)

运行后输出结果如下,可以看到Prompt中带入了 System、Human这样的角色名,区分Prompt的来源。

在这里插入图片描述

1.3 FewShotPromptTemplate:给例子的Prompt模板

在之前文章Prompt优化中,我们提到Prompt中给几个例子可以让大模型更好地生成正确的结果。这个模板就是给例子的。

python代码解读复制代码from langchain.prompts import PromptTemplate
from langchain.prompts.few_shot import FewShotPromptTemplate
#例子(few-shot)
examples = [
    {
        "input": "北京天气怎么样",
        "output" : "北京市"
    },
    {
        "input": "南京下雨吗",
        "output" : "南京市"
    },
    {
        "input": "江城热吗",
        "output" : "武汉市"
    }
]

#例子拼装的格式
example_prompt = PromptTemplate(input_variables=["input", "output"],  template="Input: {input}\nOutput: {output}") 

#Prompt模板
prompt = FewShotPromptTemplate(
    examples=examples, 
    example_prompt=example_prompt, 
    suffix="Input: {input}\nOutput:", 
    input_variables=["input"]
)

prompt = prompt.format(input="羊城多少度")

print("===Prompt===")
print(prompt)

response = llm.invoke(prompt)

print("===Response===")
print(response)

以上代码为FewShotPromptTemplate的使用示例,总结为以下关键点:

  • 例子(few-shot)用数组表示:examples
  • 用PromptTemplate表示examples中的格式:Input后跟着output,注意:input_variables中的变量与examples中每个元素的key保持一致。
  • 通过 FewShotPromptTemplate 将以上元素组合起来
    • 同时传入 suffix 参数,该参数是接收用户的输入,组装提问的prompt模板。
    • 然后input_variables表示用户输入的参数变量名

运行结果如下:红框内是通过FewShotPromptTemplate 将examples、example_prompt、suffix组合起来后最终的给大模型的Prompt。

image.png

1.4 从文件加载Prompt模板

我们还可以将Prompt模板单独存放在一个文件中,在程序运行时通过加载文件来导入Prompt模板。

这种方式很好地实现了 Prompt 和程序的分离,使得两者可以分别单独修改。甚至你可以将Prompt单独放在一个线上服务或数据库中,单独维护。

下面来看怎么实现。

1.4.1 Prompt模板文件格式

Prompt模板文件支持两种格式:yaml格式和json格式

  • yaml格式:
python代码解读复制代码 _type: prompt
input_variables:
    ["name", "description"]
template: 
    我的名字叫【{name}】,我的个人介绍是【{description}】。\n 请根据我的名字和介绍,帮我想一段有吸引力的自我介绍,以此来吸引读者关注和点赞我的账号。
  • json格式
python代码解读复制代码{
    "_type": "prompt",
    "input_variables": ["name", "description"],
    "template": "我的名字叫【{name}】,我的个人介绍是【{description}】。\n 请根据我的名字和介绍,帮我想一段有吸引力的自我介绍,以此来吸引读者关注和点赞我的账号。"
}
1.4.2 加载文件

使用 LangChain的load_prompt进行加载。

python代码解读复制代码from langchain.prompts import load_prompt
prompt = load_prompt("D:\GitHub\LEARN_LLM\langchain\langchain_prompt_file_test.json")
prompt_str = prompt.format(name="同学小张", description="热爱AI,持续学习,持续干货输出")
print(prompt_str)

response = llm.invoke(prompt_str)
print(f"\n{response}")

在这里插入图片描述

1.4.3 更进一步:文件套文件

LangChain也允许你在Prompt文件中再套Prompt文件:将文件中的template字段单独放一个txt文件使用。拆分后文件如下:

  • prompt_template_test.txt
python

代码解读
复制代码我的名字叫【{name}】,我的个人介绍是【{description}】。\n 请根据我的名字和介绍,帮我想一段有吸引力的自我介绍,以此来吸引读者关注和点赞我的账号。
  • langchain_prompt_file_test.json
python代码解读复制代码{
    "_type": "prompt",
    "input_variables": ["name", "description"],
    "template_path": "D:\\GitHub\\LEARN_LLM\\langchain\\prompt_template_test.txt"
}

注意:json里面的template字段换成了template_path字段

1.5 其它Prompt模板

还有一些其它的Prompt模板,就不详细介绍了,都差不多。

  • FewShotChatMessagePromptTemplate
  • ChatMessagePromptTemplate:可以自定义Prompt的角色名,如之前的“System”、“AI”、“Human”都是角色。

该部分参考:python.langchain.com/docs/module…

总结:把Prompt模板看作带有参数的函数

2. Predict部分:大模型接口封装

这部分主要看下LangChain对大模型的两种封装:llm 和 chat_model。

python代码解读复制代码from langchain_openai import ChatOpenAI
from langchain_openai import OpenAI

llm = OpenAI()
chat_model = ChatOpenAI()

from langchain.schema import HumanMessage

text = "What would be a good company name for a company that makes colorful socks?"
messages = [HumanMessage(content=text)]

llm.invoke(text)
# >> Feetful of Fun

chat_model.invoke(messages)
# >> AIMessage(content="Socks O'Color")

可以看到 llm 和 chat_model 的区别,一个输出字符串,一个输出message。

3. Parse部分:输出结果校验的封装

LangChain封装了一些对于大模型输出结果的约定和校验能力。下面以PydanticOutputParser为例演示一下Parse部分的使用方法和作用。

3.1 使用步骤

(1)首先定义一个你期望返回的数据结构

下面代码中,我们定义了一个Joke数据结构,它里面包含的信息有:

  • 两个变量名:setup 和 punchline,大模型的返回需要以这两个名称作为key来组织答案
  • 一个自定义的校验函数:question_ends_with_question_mark,校验信息是否符合你的要求,如果不符合,则报错。

@validator("setup") 表示校验结果中的setup字段。也就是说,首先大模型回复的答案中,首先必须是个json结构,才能解析出setup的内容。其次,json数据结构中必须有setup的字段。最后,setup的内容必须符合函数中定义的规则。这样才算通过,否则报错。

python代码解读复制代码from langchain_core.pydantic_v1 import BaseModel, Field, validator

# 定义你期望的数据结构
class Joke(BaseModel):
    setup: str = Field(description="question to set up a joke")
    punchline: str = Field(description="answer to resolve the joke")

    # 使用Pydantic添加自定义的校验逻辑,如下为检测内容最后一个字符是否为问号,不为问号则提示错误.
    @validator("setup")
    def question_ends_with_question_mark(cls, field):
        if field[-1] != "?":
            raise ValueError("Badly formed question!")
        return field

(2)生成一个解析器的实例

python

代码解读
复制代码parser = PydanticOutputParser(pydantic_object=Joke)

(3)生成 Prompt 模板

在这个Prompt模板中:

  • 通过template指定Prompt的框架
  • input_variables指定用户输入的信息放到这个变量名中
  • partial_variables是提前填充部分Prompt变量,这里通过parser.get_format_instructions()获取PydanticOutputParser中封住好的Prompt部分。
python代码解读复制代码prompt = PromptTemplate(
    template="Answer the user query.\n{format_instructions}\n{query}\n",
    input_variables=["query"],
    partial_variables={"format_instructions": parser.get_format_instructions()},
)

看下parser.get_format_instructions()的内容:

The output should be formatted as a JSON instance that conforms to the JSON schema below.

As an example, for the schema {“properties”: {“foo”: {“title”: “Foo”, “description”: “a list of strings”, “type”: “array”, “items”: {“type”: “string”}}}, “required”: [“foo”]} the object {“foo”: [“bar”, “baz”]} is a well-formatted instance of the schema. The object {“properties”: {“foo”: [“bar”, “baz”]}} is not well-formatted.

Here is the output schema: {"properties": {"setup": {"title": "Setup", "description": "question to set up a joke", "type": "string"}, "punchline": {"title": "Punchline", "description": "answer to resolve the joke", "type": "string"}}, "required": ["setup", "punchline"]}

可以看到,LangChain内部将咱们上面定义的Joke数据结构填到了里面,并要求大模型输出json结构。

(4)加上用户的提问,调用大模型获取回复

python代码解读复制代码prompt_str = prompt.format(query="Tell me a joke.")
response = llm.invoke(prompt_str)

完整Prompt如下:

在这里插入图片描述

运行结果如下:

image.png

(5)校验输出结果是否符合要求

python

代码解读
复制代码parser_result = parser.invoke(response) ## 调用parser的invoke,校验结果是否符合要求

上面的结果明显符合要求,最终输出如下:

python

代码解读
复制代码#>> setup="Why don't scientists trust atoms?" punchline='Because they make up everything!'

3.2 不符合要求的情况

为了看一下不符合要求时会发生什么,我在大模型返回后手动改了下结果,让它不符合要求(要求是问句结尾必须是问号,下面我将问号删掉了)。

image.png

运行结果:报错了

在这里插入图片描述

如果大模型返回的结果不是json结构,也会报错:

在这里插入图片描述

3.3 不符合要求怎么办?Auto-Fixing Parser帮你自动修复错误

基本用法如下:

python代码解读复制代码## 1. 引入OutputFixingParser
from langchain.output_parsers import OutputFixingParser
## 2. 使用之前的parser和llm,构建一个OutputFixingParser实例
new_parser = OutputFixingParser.from_llm(parser=parser, llm=llm)
## 3. 用OutputFixingParser自动修复并解析
parser_result = new_parser.parse(response.content)
print("===重新解析结果===")
print(parser_result)

为了展示它的效果,我还是手动将结果改错了。

在这里插入图片描述

输出结果如下:可以看到重新解析后结果正确了。

在这里插入图片描述

重新解析为什么就正确了?其实是OutputFixingParser内部又重新调用了一遍大模型

3.4 完整代码

python代码解读复制代码import os
# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())

from langchain_openai import ChatOpenAI
 
llm = ChatOpenAI() # 默认是gpt-3.5-turbo

def output_parse_test():
    from langchain.output_parsers import PydanticOutputParser
    from langchain_core.pydantic_v1 import BaseModel, Field, validator
    from langchain.prompts import PromptTemplate
    
    # 定义你期望的数据结构
    class Joke(BaseModel):
        setup: str = Field(description="question to set up a joke")
        punchline: str = Field(description="answer to resolve the joke")

        # 使用Pydantic添加自定义的校验逻辑,如下为检测内容最后一个字符是否为问号,不为问号则提示错误.
        @validator("setup")
        def question_ends_with_question_mark(cls, field):
            if field[-1] != "?":
                raise ValueError("Badly formed question!")
            return field
        
    # 生成一个解析器的实例
    parser = PydanticOutputParser(pydantic_object=Joke)
    
    # 生成 Prompt 模板
    prompt = PromptTemplate(
        template="Answer the user query.\n{format_instructions}\n{query}\n",
        input_variables=["query"],
        partial_variables={"format_instructions": parser.get_format_instructions()},
    )
    print(f"\n{parser.get_format_instructions()}")
    prompt_str = prompt.format(query="Tell me a joke.")
    print(prompt_str)
    response = llm.invoke(prompt_str)
    print(f"\n{response.content}")
    # response.content = response.content.replace("?", "") ## 认为改错结果,测试后面的OutputFixingParser
    try:
        parser_result = parser.invoke(response)
        print(f"\n{parser_result}")
    except Exception as e:
        print("===出现异常===")
        print(e)
        ## 1. 引入OutputFixingParser
        from langchain.output_parsers import OutputFixingParser
        ## 2. 使用之前的parser和llm,构建一个OutputFixingParser实例
        new_parser = OutputFixingParser.from_llm(parser=parser, llm=llm)
        ## 3. 用OutputFixingParser自动修复并解析
        parser_result = new_parser.parse(response.content)
        print("===重新解析结果===")
        print(parser_result)
output_parse_test()

关于更多 OutputParser 的说明,可以看官方文档:python.langchain.com/docs/module…

4. 总结

本文我们全面学习了LangChain的模型 I/O 封装模块。

  • LangChain 提供了各种 PromptTemplate 类,可以自定义带变量的模板
  • LangChain 统一封装了各种模型的调用接口,包括llm型和chat_model型两种,区别见上文。
  • LangChain 提供了一系列输出解析器,用于将大模型的输出解析成结构化对象;额外带有自动修复功能。

大模型资源分享

针对所有自学遇到困难的同学,我为大家系统梳理了大模型学习的脉络,并且分享这份LLM大模型资料:其中包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等。😝有需要的小伙伴,可以扫描下方二维码免费领取↓↓↓

在这里插入图片描述

一、全套 AGI 大模型学习路线

AI 大模型时代的精彩学习之旅:从根基铸就到前沿探索,牢牢掌握人工智能核心技能!

在这里插入图片描述

二、640 套 AI 大模型报告合集

此套涵盖 640 份报告的精彩合集,全面涉及 AI 大模型的理论研究、技术实现以及行业应用等诸多方面。无论你是科研工作者、工程师,还是对 AI 大模型满怀热忱的爱好者,这套报告合集都将为你呈上宝贵的信息与深刻的启示。

在这里插入图片描述

三、AI 大模型经典 PDF 书籍

伴随人工智能技术的迅猛发展,AI 大模型已然成为当今科技领域的一大热点。这些大型预训练模型,诸如 GPT-3、BERT、XLNet 等,凭借其强大的语言理解与生成能力,正在重塑我们对人工智能的认知。而以下这些 PDF 书籍无疑是极为出色的学习资源。
在这里插入图片描述
在这里插入图片描述

阶段 1:AI 大模型时代的基础认知

  • 目标:深入洞悉 AI 大模型的基本概念、发展历程以及核心原理。

  • 内容

    • L1.1 人工智能概述与大模型起源探寻。
    • L1.2 大模型与通用人工智能的紧密关联。
    • L1.3 GPT 模型的辉煌发展历程。
    • L1.4 模型工程解析。
    • L1.4.1 知识大模型阐释。
    • L1.4.2 生产大模型剖析。
    • L1.4.3 模型工程方法论阐述。
    • L1.4.4 模型工程实践展示。
    • L1.5 GPT 应用案例分享。

阶段 2:AI 大模型 API 应用开发工程

  • 目标:熟练掌握 AI 大模型 API 的运用与开发,以及相关编程技能。

  • 内容

    • L2.1 API 接口详解。
    • L2.1.1 OpenAI API 接口解读。
    • L2.1.2 Python 接口接入指南。
    • L2.1.3 BOT 工具类框架介绍。
    • L2.1.4 代码示例呈现。
    • L2.2 Prompt 框架阐释。
    • L2.2.1 何为 Prompt。
    • L2.2.2 Prompt 框架应用现状分析。
    • L2.2.3 基于 GPTAS 的 Prompt 框架剖析。
    • L2.2.4 Prompt 框架与 Thought 的关联探讨。
    • L2.2.5 Prompt 框架与提示词的深入解读。
    • L2.3 流水线工程阐述。
    • L2.3.1 流水线工程的概念解析。
    • L2.3.2 流水线工程的优势展现。
    • L2.3.3 流水线工程的应用场景探索。
    • L2.4 总结与展望。

阶段 3:AI 大模型应用架构实践

  • 目标:深刻理解 AI 大模型的应用架构,并能够实现私有化部署。

  • 内容

    • L3.1 Agent 模型框架解读。
    • L3.1.1 Agent 模型框架的设计理念阐述。
    • L3.1.2 Agent 模型框架的核心组件剖析。
    • L3.1.3 Agent 模型框架的实现细节展示。
    • L3.2 MetaGPT 详解。
    • L3.2.1 MetaGPT 的基本概念阐释。
    • L3.2.2 MetaGPT 的工作原理剖析。
    • L3.2.3 MetaGPT 的应用场景探讨。
    • L3.3 ChatGLM 解析。
    • L3.3.1 ChatGLM 的特色呈现。
    • L3.3.2 ChatGLM 的开发环境介绍。
    • L3.3.3 ChatGLM 的使用示例展示。
    • L3.4 LLAMA 阐释。
    • L3.4.1 LLAMA 的特点剖析。
    • L3.4.2 LLAMA 的开发环境说明。
    • L3.4.3 LLAMA 的使用示例呈现。
    • L3.5 其他大模型介绍。

阶段 4:AI 大模型私有化部署

  • 目标:熟练掌握多种 AI 大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述。
    • L4.2 模型私有化部署的关键技术解析。
    • L4.3 模型私有化部署的实施步骤详解。
    • L4.4 模型私有化部署的应用场景探讨。

学习计划:

  • 阶段 1:历时 1 至 2 个月,构建起 AI 大模型的基础知识体系。
  • 阶段 2:花费 2 至 3 个月,专注于提升 API 应用开发能力。
  • 阶段 3:用 3 至 4 个月,深入实践 AI 大模型的应用架构与私有化部署。
  • 阶段 4:历经 4 至 5 个月,专注于高级模型的应用与部署。
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值