深度学习模型_长短期记忆网络(LSTM)_循环神经网络(RNN)处理和预测时间序列中的模式——复合故障数据集
以下文字及代码仅供参考。
文章目录

复合故障数据集 , 7种不同工况。21.5 G
- 正常状态,
- 不平衡,
- 水平不对中,
- 垂直不对中,
- 不平衡与水平不对中复合,
- 不平衡与垂直不对中复合,
- 垂直不对中与水平不对中复合。
复合故障数据集(包含7种不同工况),处理时间序列数据的深度学习模型。考虑到旋转机械故障诊断通常涉及到时间序列分析,LSTM是一种特殊的循环神经网络(RNN),非常适合处理和预测时间序列中的模式。
1. 环境准备
首先确保您的环境中已安装必要的库:
pip install numpy pandas matplotlib scikit-learn tensorflow
2. 数据预处理
假设您的数据是以CSV文件或其他格式存储的时间序列数据,每个文件代表一个样本,并且每个样本有多个特征(如振动信号)。我们需要对数据进行一些基本的预处理,例如归一化、分割等。
示例代码:加载并预处理数据
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import train_test_split
def load_and_preprocess_data(file_path):
# 加载数据,假设每行是一个时间步的数据,最后一列是标签
data = pd.read_csv(file_path)
X = data.iloc[:, :-1].values # 特征
y = data.iloc[:, -1].values # 标签
# 标准化特征值
scaler = StandardScaler()
X = scaler.fit_transform(X)
# 对标签进行编码
encoder = LabelEncoder()
y = encoder.fit_transform(y)
return X, y, scaler, encoder
# 假设我们有多个文件,这里只给出一个示例
X, y, scaler, encoder = load_and_preprocess_data('path/to/your/dataset.csv')
# 划分训练集、验证集和测试集
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.3, random_state=42)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)
3. 构建LSTM模型
接下来,我们将构建一个简单的LSTM模型来处理这些时间序列数据。
示例代码:构建并训练LSTM模型
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
def build_lstm_model(input_shape, num_classes):
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=input_shape))
model.add(Dropout(0.2))
model.add(LSTM(50))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
return model
input_shape = (X_train.shape[1], 1) # 考虑到LSTM需要三维输入 (样本数, 时间步长, 特征数)
num_classes = len(np.unique(y)) # 类别数量
model = build_lstm_model(input_shape, num_classes)
# 训练模型
history = model.fit(
X_train.reshape((X_train.shape[0], X_train.shape[1], 1)),
y_train,
epochs=50,
batch_size=32,
validation_data=(X_val.reshape((X_val.shape[0], X_val.shape[1], 1)), y_val)
)
4. 模型评估与优化
训练完成后,可以使用测试集评估模型性能,并根据结果调整模型结构或参数以进一步优化。
示例代码:评估模型
loss, accuracy = model.evaluate(X_test.reshape((X_test.shape[0], X_test.shape[1], 1)), y_test)
print(f'Test Accuracy: {accuracy}')
# 如果需要,可以根据需要调整模型并重新训练
注意事项
,实际应用中可能需要根据具体的数据格式和需求进行相应的调整。
- 在处理大型数据集时,考虑使用数据生成器(
tf.keras.preprocessing.sequence.TimeseriesGenerator
或自定义生成器)来逐批加载数据,避免内存不足的问题。 - 进一步优化模型可以通过调整超参数(如LSTM单元数、层数、dropout率等)、尝试其他类型的RNN或结合传统机器学习方法提取特征后输入到深度学习模型中等方式实现。