IEEE TII 基于多任务学习的异构数据协同建模,用于制造过程中的复合故障诊断

期刊信息:

IEEE Transactions on Industrial Informatics (中科院1区, JCR Q1 TOP, IF=11.7)

作者单位:

the Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Edu cation, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

the School of Advanced Engineering, Univer sity of Science and Technology Beijing, Beijing 100083, China

PART.01 摘要

由于制造过程的复杂多变的工作条件以及相互连接和耦合的回路,多个过程子系统或控制回路的故障可能会同时或相继发生,复合故障成为常态。复合故障发生后,其特征可能是传感器数据、图像或视频数据异常。大多数传统方法使用单一类型的传感器数据进行故障诊断,这可能会影响诊断性能。为了解决这个问题,考虑到复合故障数据的异质性,提出了一种基于多任务学习的复合故障诊断协同建模方法。具体来说,将异构复合断层数据映射到一个公共子空间中,考虑到非结构化和结构化数据的不同贡献,合理设置其动态组合系数。此外,考虑到异构数据之间的相关性,将低秩约束跟踪范数引入多任务学习,并设计了一个基于注意力的特征融合网络用于复合故障诊断。最后,在实际制造过程中,即热轧过程中,进行了两个案例来评估所提出方法的有效性。实验结果表明,与现有的最先进算法相比,异构数据的新协作建模方案可以更好地执行复合故障诊断任务。

Index Terms—异构数据协同建模、复合故障诊断、低阶约束跟踪、制造过程、多任务学习(MTL)。

PART.02 问题背景

制造过程中有数以万计的过程变量、控制回路和子系统。一个控制回路中的故障可能会导致其他几个相关控制回路或子系统的连锁反应。上游过程中的故障可能会继承到下游过程中,导致故障积聚,表现出复合故障特征,如多种故障模式的耦合和故障特征的多样化。复合故障诊断技术是提高制造过程安全性、稳定性和可靠性的重要手段。它是促进智能制造以及提高质量和效率的关键切入点,已成为过程控制领域的研究热点。

根据技术手段和分析程序的不同,复合故障诊断技术可以通过基于分析模型的方法、基于信号处理的方法和基于数据的方法来实现。由于制造过程的复杂性和集成性,基于分析模型的方法很难获得典型设备动态参数与异常状态下故障特征之间的精确内在关系,用于故障诊断。作为替代方法,可以通过基于信号处理的方法分析制造过程中典型设备的故障信号,提取故障特征,用于复合故障诊断。由于这些方法大多依赖于先进的信号处理技术和特定领域的专家知识,因此很难揭示更深层次的故障特征,从而导致复合故障的识别和诊断更加困难和不准确。

为了满足制造工艺数字化、智能化转型升级的需要,生产线上安装了大量实时传感和采集设备,使基于数据的方法受到复合故障诊断领域的广泛关注。这些方法很少需要故障机制和专家知识,可以通过从大量监测数据中提取故障特征来实现复合故障诊断。基于数据的复合故障诊断方法可分为基于机器学习的方法和基于深度学习的方法。基于机器学习的方法,如支持向量机、k近邻和人工神经网络,使用收集到的过程数据来训练机器学习模型,从而识别复合故障模式,实现智能故障诊断。尽管这些方法适用于复合故障诊断,但它们大多是浅层智能模型,对复杂映射的能力有限,更依赖于特征提取和选择结果。特别是对于具有许多生产过程、复杂多变的工作条件以及耦合故障模式的制造过程,很难建立更好的广义模型来满足复杂环境中的诊断需求。

与传统的机器学习方法相比,深度学习方法,如深度信任网络、自动编码器、卷积神经网络(CNN)、贝叶斯学习和主动学习,在以端到端的方式映射操作状态和监控数据之间的关系方面具有更强的表示能力和显著的优势。同时,可以避免人工特征提取和分类带来的许多不确定性,减少对专家知识的依赖,使这些方法在复合故障诊断领域受到广泛关注。

然而,这些方法大多严重依赖于丰富的故障模式数据,并要求训练和测试数据满足独立分布,这可能不适用于故障数据不完整和工作条件可变的制造过程。为了解决这些问题,已经开发了一些流行的方法,如增量学习、半监督学习、零样本学习和迁移学习。这些方法大多解决了样本或标签少、零样本的问题,在工程实践中得到了推广和应用。然而,大多数基于深度学习的方法只使用异常的时间序列数据来构建复合故障诊断模型。众所周知,复合断层发生后,其特征可能是异常的结构化时间序列数据或非结构化数据,如图像和视频数据。这些异质断层数据在属性结构和类型上存在明显差异。因此,很难实现它们之间的融合和资源共享。如何对异构数据进行统一表示和协同建模,提取更完整的故障特征,是提高复合故障诊断模型泛化能力和准确性的迫切问题,已成为工程需求驱动的关注焦点。

基于上述观察,本文提出了一种基于多任务学习(MTL)的异构数据协同建模用于复合故障诊断,这将为提高制造过程中生产操作的安全性、稳定性和可靠性提供一种可行的方案。主要贡献如下:

1) 提出了一种基于矩阵分解的子空间学习方法,

2) 提出了一种基于低秩约束跟踪范数的MT方法来挖掘异质数据之间的相关性,其中考虑了非结构化和结构化数据的不同贡献来设置动态组合系数;

3) 设计一个基于注意力的特征融合网络,用于复合故障诊断;

4) 通过一个具有代表性的热轧工艺(HRP)验证了所提出方案的优越性和可行性,并进行了一些对比模拟实验。

PART.03 方法概述

本节介绍了所提出的基于MTL的异构数据协同建模框架的基本思想。之后,给出了优化和求解的过程。然后,介绍了所设计的基于注意力的复合故障诊断特征融合网络

A.基于MTL的协同建模方法

低秩约束通常用于分析异构数据的结。本文将其引入到MTL中,用于挖掘异质数据之间的相关性,以实现复合故障诊断。

可以看出,目标函数包括四个部分。第一项是耦合线性回归,它是多视图和融合非结构化数据以及结构化数据的耦合映射。第二项是联合低秩约束项,用于消除冗余特征信息并挖掘内部相关性。第三项是映射相似性保持,用于最小化结构化和非结构化数据之间的误差。第四项是多视点非结构化数据的约束项,目的是进行特征选择。

B.优化和解决方案

可以看出,非结构化和结构化数据协同建模的目标函数涉及非光滑跟踪范数。难以解决和优化。因此,应用了众所周知的重新加权最小二乘法,并引入了迹范数的变体公式。

算法1总结了用于协同建模的迭代加权最小二乘法。

基于上述介绍,可以实现所提出的基于MTL的异构数据协同建模,用于复合故障诊断,相关流程如图1所示。主要步骤总结如下:1)收集结构化数据和多视图非结构化数据,将多视图非结构数据灰化,并在标准化后构建Xy和Xs;2) 对多视图非结构化数据进行投影学习,得到公共投影矩阵P,对结构化数据和多视图非结构数据进行耦合线性回归学习,得到R和R,3)构建基于注意力的特征融合网络,实现复合故障诊断。

PART.04 实验

在本节中,通过实际的HRP验证了基于MTL的异构数据协作建模用于复合故障诊断的有效性。首先,描述了背景过程和数据集构建。然后,详细说明了不同复合故障诊断算法的性能比较。

A.过程描述和数据集构建

HRP是高温下塑性变形和金属材料加工的过程,广泛应用于钢铁材料的生产和加工。如图2所示,每个过程的功能是不同的,但它们是相互关联、相互支持和相互限制的。

作为本文的核心和背景生产过程,精轧机过程中,相关的复合故障可能表现为传感器数据等高频和高维结构化时间序列数据异常,或图像和视频等非结构化数据异常。异质断层数据在属性结构、类型和质量上存在明显差异。异构数据之间很难实现融合和资源共享。深入分析和融合精轧过程中不同位置捕获的异构故障信息,实现基于融合异构数据的复合故障诊断,对于提高HRP复合故障诊断的性能具有重要意义。

B.复合故障案例研究1

本案例研究用于测试复合故障I的诊断性能。从图3可以看出,当ai和oz不同时,协作建模算法的性能会有所不同。一般来说,当a=1.5e-4时,可以获得更好的性能。这是因为不适当的值不能完全消除冗余特征并挖掘内部相关性。此外,我们可以看到,a2=1.5e-4最适合最小化结构化和非结构化数据之间的误差。然后,固定a和arz,以测试a变化时的性能。如图4所示,协作建模算法对折衷参数a不太敏感。综上所述,1.5e-4是ar的最合适值。此外,当ai、az和a固定时,许多消融实验将n设置为0.005。

这六种方法学习的高维深度特征映射的诊断结果如图5-10所示。可以证明,传统方法可以很好地诊断故障1,而DCNN、FL和AIFN-IA方法无法很好地识别复合故障1和2。相比之下,即使重叠较少,DCGCN和新方法学习的深度特征图也有明显的区别。

此外,表I-V给出了评价指标的比较。可以看出,对于三种类型的故障样本,DCGCN和提出的方法的准确率和召回率接近1.000。相比之下,协同建模方法具有更好的F分数和F’-统计,这意味着与其他替代算法相比,在精度和召回最小类内距离和最大类间距离之间取得了平衡。即使新方法的训练时间不是最优的,也能基本满足实际工程要求。

C.复合断层II的案例研究

为了进一步体现所提出的复合故障诊断方法的优越性,利用了另一个数据集。从图4和11可以看出,与第一种情况的参数选择过程类似.

然后,t-SNE还用于减少和可视化这六种算法学习到的高维深度特征图,如图12-17所示。

此外,表V_VIII列出了评价指标的比较。可以看出,所提出的协同建模方法可以获得理想的精确度、召回率、得分和F统计量。

PART.05 总结

本文设计了一种基于aMTL的异构数据协同建模方法,用于制造过程中的复合故障诊断。首先,提出了一种基于矩阵分解的子空间学习方法,用于将异构数据映射到公共子空间。然后,提出了一种基于低秩约束跟踪范数的TL方法来挖掘异质数据之间的相关性,并考虑到不同结构化数据的贡献,合理地设置了一个动态组合系数。之后,构建了基于概念的特征融合网络用于复合材料故障诊断。最后,使用两个典型的HRP案例验证了复合故障诊断框架的有效性。对比实验表明,该框架优于一些比较算法,为提高制造过程的安全性、稳定性和可靠性提供了一种新方案。

虽然设计方案考虑了不同结构数据的贡献,但动态组合系数是根据专家经验选择的,这给复合故障诊断带来了一些不确定性。如何通过基于数据的方法学习和获取动态组合系数需要进一步探索。此外,传感器数据和视频数据仅用于协同建模,目的是进行复合故障诊断。然而,在实际的制造过程中,异常数据的类型远远不止这两种,如语音和图像数据。如何将更多类型的异构数据组合起来进行协同建模,以实现更准确的复合故障诊断,需要进一步研究。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值