通过卷积神经网络提取帧特征及LSTM /Transformer 对视频序列建模评估训练 通过计算机视觉(CV)技术来处理手语数据集,对手语数据集_视频进行分类或识别

通过计算机视觉(CV)技术来处理手语数据集,对手语数据集/视频进行分类或识别

csl-2015手语数据集在这里插入图片描述

csl手语数据集,包含词和句,数量分别为500和100。

用的是cv。
以下文字及代码仅供参考。
在这里插入图片描述

处理 CSL-2015 手语数据集 的任务可以通过计算机视觉(CV)技术来实现。该数据集包含 500 个手语词汇和 100 个句子的手语视频,目标是通过 CV 技术对手语视频进行分类或识别。

以下是详细的步骤和代码示例。

仅供参考。

在这里插入图片描述

1. 数据集准备

数据集结构

假设数据集目录结构如下:

csl_dataset/
├── words/
│   ├── word_001/
│   │   ├── frame_001.jpg
│   │   ├── frame_002.jpg
│   │   └── ...
│   ├── word_002/
│   └── ...
├── sentences/
│   ├── sentence_001/
│   │   ├── frame_001.jpg
│   │   ├── frame_002.jpg
│   │   └── ...
│   ├── sentence_002/
│   └── ...
  • 每个手语词汇或句子对应一个文件夹。
  • 文件夹内包含按时间顺序排列的帧图像(每秒 30 帧或其他帧率)。

2. 数据预处理

将视频帧转换为适合模型输入的形式。以下是一个示例代码:

import os
import cv2
import numpy as np

def preprocess_frames(video_dir, target_size=(224, 224)):
    frames = []
    for frame_file in sorted(os.listdir(video_dir)):
        frame_path = os.path.join(video_dir, frame_file)
        frame = cv2.imread(frame_path)  # 读取图像
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)  # 转换为 RGB
        frame = cv2.resize(frame, target_size)  # 调整大小
        frame = frame / 255.0  # 归一化
        frames.append(frame)
    return np.array(frames)

# 示例:预处理一个词汇视频
video_dir = 'csl_dataset/words/word_001'
frames = preprocess_frames(video_dir)
print(f"Processed {len(frames)} frames with shape: {frames.shape}")

3. 数据划分

将数据划分为训练集、验证集和测试集:

import random
import os

def split_dataset(data_dir, train_ratio=0.8, val_ratio=0.1):
    categories = os.listdir(data_dir)
    random.shuffle(categories)

    train_num = int(len(categories) * train_ratio)
    val_num = int(len(categories) * val_ratio)

    train_categories = categories[:train_num]
    val_categories = categories[train_num:train_num + val_num]
    test_categories = categories[train_num + val_num:]

    return train_categories, val_categories, test_categories

data_dir = 'csl_dataset/words'
train_categories, val_categories, test_categories = split_dataset(data_dir)

# 输出划分结果
print(f"Train: {len(train_categories)}, Val: {len(val_categories)}, Test: {len(test_categories)}")

4. 特征提取

使用预训练的卷积神经网络(如 ResNet、EfficientNet)提取每一帧的特征:

from tensorflow.keras.applications import ResNet50
from tensorflow.keras.applications.resnet import preprocess_input

# 加载预训练模型(去掉顶层)
base_model = ResNet50(weights='imagenet', include_top=False, pooling='avg')

def extract_features(frames):
    frames_preprocessed = preprocess_input(frames)  # 预处理
    features = base_model.predict(frames_preprocessed)  # 提取特征
    return features

# 示例:提取特征
features = extract_features(frames)
print(f"Extracted features with shape: {features.shape}")

5. 视频建模

由于手语是由一系列帧组成的序列,因此可以使用时间序列建模方法(如 LSTM 或 Transformer)对视频进行分类。

使用 LSTM 建模
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

def build_lstm_model(input_shape, num_classes):
    model = Sequential([
        LSTM(128, input_shape=input_shape, return_sequences=False),
        Dense(64, activation='relu'),
        Dense(num_classes, activation='softmax')
    ])
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    return model

# 示例:构建模型
input_shape = (None, 2048)  # 假设每帧特征维度为 2048
num_classes = 500  # 词汇数量
model = build_lstm_model(input_shape, num_classes)
model.summary()

6. 数据生成器

为了高效加载数据,可以使用数据生成器:

import numpy as np

def data_generator(categories, data_dir, batch_size=16):
    while True:
        random.shuffle(categories)
        for i in range(0, len(categories), batch_size):
            batch_categories = categories[i:i + batch_size]
            X, y = [], []
            for category in batch_categories:
                video_dir = os.path.join(data_dir, category)
                frames = preprocess_frames(video_dir)
                features = extract_features(frames)
                X.append(features)
                y.append(int(category.split('_')[-1]))  # 类别编号
            X = np.array(X)
            y = np.eye(num_classes)[y]  # One-hot 编码
            yield X, y

# 示例:创建生成器
train_gen = data_generator(train_categories, data_dir)
val_gen = data_generator(val_categories, data_dir)

7. 模型训练

训练 LSTM 模型:

batch_size = 16
steps_per_epoch = len(train_categories) // batch_size
validation_steps = len(val_categories) // batch_size

model.fit(
    train_gen,
    steps_per_epoch=steps_per_epoch,
    validation_data=val_gen,
    validation_steps=validation_steps,
    epochs=20
)

8. 模型评估

在测试集上评估模型性能:

test_gen = data_generator(test_categories, data_dir)
loss, accuracy = model.evaluate(test_gen, steps=len(test_categories) // batch_size)
print(f"Test Loss: {loss}, Test Accuracy: {accuracy}")

9. 推理与可视化

加载训练好的模型并进行推理:

def predict_video(video_dir, model):
    frames = preprocess_frames(video_dir)
    features = extract_features(frames)
    predictions = model.predict(np.array([features]))
    predicted_class = np.argmax(predictions, axis=1)
    return predicted_class

# 示例:推理
predicted_class = predict_video('csl_dataset/words/word_001', model)
print(f"Predicted Class: {predicted_class}")

总结

以上是基于 CSL-2015 手语数据集的完整处理流程。通过计算机视觉技术,tx同学你可以:

  1. 提取视频帧并进行预处理。
  2. 使用卷积神经网络提取帧特征。
  3. 使用 LSTM 或 Transformer 对视频序列进行建模。
  4. 训练、评估和部署模型。

如果需要进一步优化,同学你也可以尝试以下方法:

  • 使用更强大的特征提取模型(如 EfficientNet、ViT)。
  • 尝试 Transformer 替代 LSTM。
  • 增加数据增强以提高泛化能力。

有辅助创作,仅供参考,

仅供参考。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值