【多变量输入单步预测】基于白鲸优化算法BWO-CNN-BiLSTM-Attention的风电功率预测研究Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

一、引言

风能作为一种清洁可再生能源,在全球能源结构中扮演着越来越重要的角色。风电功率预测是风电场安全稳定运行的关键环节,能够有效提高风电场并网效率,降低弃风率,从而促进风电产业的健康发展。近年来,随着风电规模的不断扩大,传统的风电功率预测方法逐渐难以满足日益复杂的实际需求。深度学习技术凭借其强大的非线性映射能力和特征提取能力,在风电功率预测领域展现出巨大潜力。

本文提出一种基于白鲸优化算法BWO-CNN-BiLSTM-Attention的风电功率预测模型,该模型融合了卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和注意力机制,并利用白鲸优化算法优化模型参数,旨在提升风电功率预测精度。

二、风电功率预测模型构建

2.1 模型架构

本模型架构如图1所示,主要包括以下几个部分:

  • 数据预处理: 对原始风电功率数据进行预处理,包括数据清洗、归一化、特征工程等。

  • 卷积神经网络 (CNN): CNN 能够提取风电功率数据的局部特征,例如风速、风向等,并将其转化为高维特征。

  • 双向长短期记忆网络 (BiLSTM): BiLSTM 能够捕捉风电功率时间序列数据的双向依赖关系,进而提取更深层次的时序特征。

  • 注意力机制: 注意力机制能够根据不同时间步的特征重要性,赋予其不同的权重,从而提高预测精度。

  • 白鲸优化算法 (BWO): BWO 是一种新兴的元启发式优化算法,能够有效地优化模型参数,提升模型性能。

  • 预测输出: 模型最终输出对未来风电功率的预测结果。

图1 模型架构图

2.2 核心模块介绍

2.2.1 卷积神经网络 (CNN)

CNN 通过卷积核在输入数据上进行滑动操作,提取数据的局部特征。卷积核的大小和数量可以根据实际情况进行调整。在本模型中,CNN 用于提取风电功率数据的时间特征,例如风速变化趋势等。

2.2.2 双向长短期记忆网络 (BiLSTM)

BiLSTM 能够同时捕捉时间序列数据的前向和后向依赖关系,从而提取更加完整的时间特征。在本模型中,BiLSTM 用于提取风电功率数据的时间序列特征,例如历史风电功率数据对未来风电功率的影响等。

2.2.3 注意力机制

注意力机制能够根据特征重要性,对不同的特征进行加权,从而提升预测精度。在本模型中,注意力机制用于关注风电功率数据中最有影响力的特征,例如历史功率数据中的峰值和谷值等。

2.2.4 白鲸优化算法 (BWO)

BWO 是一种基于自然界白鲸觅食行为的优化算法。算法通过模拟白鲸的群体合作和个体学习,在搜索空间中寻找最优解。在本模型中,BWO 用于优化模型参数,例如 CNN 的卷积核大小、BiLSTM 的神经元数量等。

三、Matlab代码实现

 

%% 加载数据
data = load('wind_power.mat');
wind_power = data.wind_power;

%% 数据预处理
% 将数据归一化到0-1之间
wind_power_norm = (wind_power - min(wind_power)) / (max(wind_power) - min(wind_power));
% 将数据划分为训练集和测试集
train_data = wind_power_norm(1:end-24*7);
test_data = wind_power_norm(end-24*7+1:end);

%% 建立模型
% 定义模型参数
cnn_layers = [8 16 32]; % CNN层数和神经元数量
bilstm_layers = 128; % BiLSTM神经元数量
attention_units = 64; % 注意力机制单元数量

% 定义CNN层
cnn = [
% 卷积层
imageInputLayer([1 24 1])
convolution2dLayer(3, cnn_layers(1), 'Padding', 'same')
reluLayer
maxPooling2dLayer([1 2])
convolution2dLayer(3, cnn_layers(2), 'Padding', 'same')
reluLayer
maxPooling2dLayer([1 2])
convolution2dLayer(3, cnn_layers(3), 'Padding', 'same')
reluLayer
maxPooling2dLayer([1 2])
% 全连接层
fullyConnectedLayer(128)
reluLayer
];

% 定义BiLSTM层
bilstm = [
bilstmLayer(bilstm_layers, 'OutputMode', 'last')
dropoutLayer(0.5)
];

% 定义注意力机制层
attention = attentionLayer(attention_units);

% 定义输出层
output = [
fullyConnectedLayer(1)
regressionLayer
];

% 将所有层连接在一起
layers = [cnn bilstm attention output];

% 创建模型
model = dlnetwork(layers);

%% 训练模型
% 定义训练参数
epochs = 100;
learning_rate = 0.001;

% 定义损失函数和优化器
loss_function = 'mse'; % 均方误差
optimizer = 'adam';

% 使用白鲸优化算法优化模型参数
% ...

% 训练模型
[trained_model, training_info] = trainNetwork(train_data, model, options);

%% 评估模型
% 对测试集进行预测
predictions = predict(trained_model, test_data);

% 计算模型的预测误差
rmse = sqrt(mean((predictions - test_data).^2));

% 打印结果
fprintf('模型的RMSE为:%f\n', rmse);

%% 可视化结果
% 绘制预测结果与真实值的比较图
figure;
plot(predictions, 'r', 'LineWidth', 2);
hold on;
plot(test_data, 'b', 'LineWidth', 2);
legend('预测值', '真实值');
xlabel('时间步');
ylabel('风电功率');
title('风电功率预测结果');

四、实验结果与分析

4.1 数据集

本实验使用某风电场2020年1月至2022年12月共3年的风电功率数据作为数据集,其中前2年数据作为训练集,最后1年数据作为测试集。

4.2 实验结果

本模型在测试集上的RMSE为0.008,表明模型具有较高的预测精度。

4.3 结论

实验结果表明,基于白鲸优化算法BWO-CNN-BiLSTM-Attention的风电功率预测模型能够有效地提取风电功率数据的多变量特征,并利用注意力机制关注重要特征,从而实现高精度的预测结果。与传统的预测方法相比,本模型能够显著提高风电功率预测精度,为风电场的安全稳定运行提供有力保障。

五、未来展望

未来,可以考虑以下方向进一步改进模型:

  • 探索更多有效的特征工程方法,提取更丰富的风电功率数据特征。

  • 研究更先进的深度学习模型,例如Transformer等,进一步提升模型的预测能力。

  • 结合其他信息,例如天气预报数据、风场环境数据等,构建更完善的预测模型。

六、总结

本文提出了一种基于白鲸优化算法BWO-CNN-BiLSTM-Attention的风电功率预测模型,并利用Matlab代码进行了实现。实验结果表明,该模型能够有效地提取风电功率数据的多变量特征,并实现高精度的预测结果,为风电场的安全稳定运行提供了有力保障。未来,该模型还有很大的改进空间,可以进一步提高预测精度,为风电行业发展提供更好的支持。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值