HQQ量化学习资料汇总 - 快速准确的大模型量化工具

HQQ简介

HQQ (Half-Quadratic Quantization)是一种快速准确的模型量化器,无需校准数据即可在几分钟内量化最大的模型。它由 Mobius ML 团队开发,具有以下主要特点:

  • 量化速度非常快
  • 支持8、4、3、2、1比特量化
  • 适用于各种模型(LLM、视觉模型等)
  • 反量化步骤是线性操作,兼容各种优化的CUDA/Triton内核
  • 与PEFT训练兼容
  • 尝试与torch.compile完全兼容以加快推理和训练速度

HQQ性能

官方资源

安装使用

  1. 安装HQQ:
pip install hqq
  1. 基本用法:
from hqq.core.quantize import *

# 量化设置
quant_config = BaseQuantizeConfig(nbits=4, group_size=64)

# 替换线性层
hqq_layer = HQQLinear(your_linear_layer,
                      quant_config=quant_config,
                      compute_dtype=torch.float16,
                      device='cuda')

进阶使用

与Transformers集成

HQQ可以与Hugging Face的Transformers库无缝集成:

from transformers import AutoModelForCausalLM, HqqConfig

quant_config = HqqConfig(nbits=4, group_size=64)

model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    torch_dtype=torch.float16,
    device_map="cuda",
    quantization_config=quant_config
)

自定义量化配置

HQQ支持为不同层设置不同的量化配置:

q4_config = {'nbits':4, 'group_size':64}
q3_config = {'nbits':3, 'group_size':32}

quant_config = HqqConfig(dynamic_config={
  'self_attn.q_proj':q4_config,
  'self_attn.k_proj':q4_config,
  'self_attn.v_proj':q4_config,
  'self_attn.o_proj':q4_config,
  'mlp.gate_proj':q3_config,
  'mlp.up_proj'  :q3_config,
  'mlp.down_proj':q3_config,
})

更多资源

HQQ为大模型量化提供了一个高效、灵活的解决方案。通过本文提供的资源,相信读者可以快速上手并应用HQQ技术来优化自己的模型。如有任何问题,欢迎参考官方文档或在GitHub仓库中提出issue。

文章链接:www.dongaigc.com/a/hqq-quantitative-learning-resources
https://www.dongaigc.com/a/hqq-quantitative-learning-resources

本资源《甲状腺结节分割Python源码:DeeplabV3、Unet与VNet实现》提供了一个全面的项目平台,允许用户学习如何使用DeeplabV3、Unet和VNet三种深度学习模型在Python环境下对甲状腺结节进行图像分割。实现该功能需要经过以下几个步骤: 参考资源链接:[甲状腺结节分割Python源码:DeeplabV3、Unet与VNet实现](https://wenku.csdn.net/doc/5v2fv9hqq6?spm=1055.2569.3001.10343) 1. 环境搭建:确保安装了深度学习框架,如TensorFlow或PyTorch。同时安装图像处理库如OpenCV、Pillow,数据处理库如NumPy、Pandas,以及可视化工具Matplotlib。 2. 数据准备:获取甲状腺结节的医学图像数据集,并对数据进行预处理,包括归一化、缩放、增强等操作。确保数据分为训练集、验证集和测试集。 3. 构建模型:使用提供的源码,根据DeeplabV3、Unet、VNet模型的架构,定义网络结构。DeeplabV3使用空洞卷积来捕捉多尺度特征;Unet采用U型结构,并结合跳跃连接来融合特征;VNet专门针对三维数据,通过体积卷积块来提取特征。 4. 训练模型:利用准备好的数据集对三个模型进行训练。需要设置合适的损失函数(如交叉熵损失或Dice系数损失),优化器(如Adam),并确定训练的轮数(epochs)。 5. 模型评估:训练完成后,使用验证集和测试集对模型的性能进行评估。重点关注指标包括准确率、召回率、Dice系数等。 6. 结果分析:对模型分割结果进行可视化,并与实际医学图像分析结果对比,分析模型的优缺点。 7. 二次开发:鼓励用户根据项目需要,对现有模型进行调优或改进,比如引入注意力机制、使用不同的损失函数或优化器等。 通过这些步骤,您可以深入理解每种模型的架构和特点,并在实践中提高甲状腺结节图像分割的精度。项目资源不仅提供了模型的代码实现,还包含了解释模型原理和操作步骤的详细文档,是学习和研究深度学习在医学图像分割领域应用的宝贵资料。 参考资源链接:[甲状腺结节分割Python源码:DeeplabV3、Unet与VNet实现](https://wenku.csdn.net/doc/5v2fv9hqq6?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值